LeetCode刷题——279. 完全平方数

本文介绍了LeetCode上的第279题——完全平方数问题,主要探讨了解决该问题的解题思路。利用四平方和定理,通过消去4的因子并观察特定余数情况,可以确定构成完全平方数的最少数量。文章给出了详细的Java代码实现,包括关键规律和边界条件处理。
摘要由CSDN通过智能技术生成

面试刷题第六天

LeetCode刷题——279. 完全平方数

1、题目描述

给你一个整数n,返回和为n的完全平方数的最少数量 。
完全平方数是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1、4、9 和 16 都是完全平方数,而 3 和 11 不是。
在这里插入图片描述
在这里插入图片描述

2、解题思路

四平方和定理:任何一个数拆成平方数的项,不会超过4个。
规律解:
(1)规律一:个数不超过4。
(2)规律二:出现1个的时候,就是n开平方为整数。
(3)规律三:任何数消掉4的因子,结论不变。
(4)规律四:消掉4的因子后,若除8余7,一定是由4个组成。
Java代码如下:

class Solution {
    public int numSquares(int n) {
    	//先消掉4的因子
        while(n % 4 == 0){
            n /= 4;
        }
        if(n % 8 == 7){
            return 4;
        }
        for(int a=0; a*a<=n; ++a){
            int b = (int) Math.sqrt(n -a*a);
            if(a*a + b*b == n){
                return (a>0 && b>0) ? 2 : 1;
            } 
        }
        return 3;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值