[公开课] 线性代数 学习记录1

MIT的公开课。当年线性代数学得算可以了,但是考完就全部忘光,想来并没真正理解。这次温故知新,感觉还不错。

 

第1课

主要记住了列图和行图。即,向量和矩阵相乘,可以看成如下形式:

即,行向量A将矩阵B各行进行线性组合,列向量A将矩阵B的各列进行线性组合。

 

 

第2课

这讲介绍了高斯消元法求解Ax = b

我们将A转换为上三角阵U,b也进行同样的变换,则目标式转换为 Ux = c

 

第3课

矩阵相乘,按照第一课的理解扩展,同时还可以对矩阵进行分块运算。

可逆问题:A可逆,说明A乘以某个矩阵得单位阵。A不可逆,说明A中的列线性相关。所以可以理解为:行列式为0,Ax = 0有非零解,等。

求逆的方法:Gauss-Jordan法,对 [ A I ] 进行变换,至[ I E ],则 E = A^-1为A的逆。

 

第4课

LU分解:将A分解为下三角阵L和上三角阵U之积,

回忆高斯消元,需要将A转换为上三角阵U,在此过程中进行了初等行变换,即EA = U

若考虑到交换行的情况,引入置换矩阵P,则有PA = LU

 

 第5课

转置。对称矩阵 A^T = A

置换矩阵 转置 = 逆

向量空间  对加法、乘法封闭

子空间  过原点

 

第6课

 Ax = b

可以看作是A各列的线性组合得到b

所以有解的充分必要条件是b在A的列的向量空间中。即b属于C(A) 列空间

零空间:使Ax= 0的所有x组成的向量空间


第7课

Ax = 0

求解零空间的算法

秩 rank(A) A中线性无关列的个数。即主元的个数 。rank(A) = rank(At)

将A转换为每列主元打头的阶梯形式,U

|_____________

      |__________

                  |____

则可以对自由列(非主列)的系数进行选取,求出主列的系数,即为Ux = 0的一个特解。所有特解组成的向量空间即为原等式的解。

 

更进一步,对U进行变换,使得主元的上下都为,且主元为1.得简化矩阵R  rref

那么R可以分为主元列组成的子矩阵I和自由列组成的F ,

那么方程的解直接为[ -F ; I ]

 

 第8课

 前面有说, Ax = b有解的充要条件是b在A的列的向量空间中。

该表述等价于:如果A中某些行的线性组合为0行,则b的对应行的线性组合为0

 求解方法:

1 将自由变量设为0,求出此时主变量的值。为其中的一个特解x_p。

2 该特解加上零空间的任意向量x_n均为方程的解。

 故解为零空间从原点平移了x_p,但不是一个向量空间。

 

 满秩

对m*n的矩阵A,r = rank(A)

则r<=m, r<=n

列满秩:r = n,无自由变量,零空间为0,至多只有一个特解

|   |

|   |  r =   | I |

|   |         | 0 |

行满秩:r = m, 有n-r个自由变量,总有多解

|                 |     R = | I   F |

|                 |   

r = m = n时, 无自由变量,零空间为0,有且只有一个解

不满秩:

r<m, r<n时

R = | I   F |

       | 0  0 |

可能无解,1解或多解,取决于b

 

第9课

如果A中的各列线性无关,则A的零空间为0,rank(A) = n

如果A中的各列线性相关,则A的零空间存在非零向量,rank(A) < n

列向量的所有线性组合-生成列空间

如果组成空间的所有列向量都线性无关-基[线性无关/生成整个空间]

空间的维数-生成该空间所需要的基向量的个数

秩rank(A) = 主列的个数 = 列空间的维数C(A)

零空间的维数 = 自由列的个数 = n - r

当知道维数d时,任意d个线性无关的向量便为基

 

 

 

第10课 4个空间的关系

A Rm*n

列空间C(A) Rm,维数r

行空间C(A^T) Rn,维数r

零空间N(A) Rn,维数n - r

左零空间N(A^T) Rm,维数m - r

初等行变换保持行空间不变,列空间改变

行空间的基是R的前r行

左零空间:A^T y = 0

转置,得 y^T A = 0^T,故称左零向量

求解方法:即找到使A中行向量线性组合为0向量的组合。

[ A  I ] -> [ R  E],则EA = R,E中对应R的行向量即为左零空间的基向量。

 最后,将矩阵看做特殊向量组成向量空间(忽略向量*向量这件事)

 

 

第11课

矩阵空间

dim(S) + dim(U) = dim(S交U)  + dim(S+U)

向量空间的扩展,如微分方程的解等等。

矩阵的秩

秩为1 的矩阵可以表示为一行乘以一列

秩为r的矩阵可以拆成r歌秩为1的矩阵

秩为r的矩阵不构成子空间,因为2个秩为r的矩阵相加,秩可以为0~2r

最小世界图

图 包括: 结点,边

设每个人是一个结点,如果2人为好友,则2点间有一条边,结论:2点间不超过6条边

 

第12课

线性代数的应用

矩阵的实际应用中的来源很多是图

图->矩阵A:

行为每条边,列为每个点,

入点为+1,出点为-1,其余点为0

结构特点:很多0

解了一个电路问题。 

图中的相关性由loop导致,无loop的图叫做树。

 #nodes - #edges + #loops = 1(欧拉公式)

e = Ax ; y = Ce ; AT*y = f =〉 AT C A x = f 平衡状态应用数学的基本方程

 

第13课  习题课

行空间和零空间正交

当C可逆时,CD 的零空间和D的零空间一致。


 

 

 

 

 

 

 

 

 

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值