微积分-微分应用2(平均值定理)

要得出平均值定理,我们首先需要以下结果。

罗尔定理

设函数 f f f 满足以下三个假设:

  1. f f f 在闭区间 [ a , b ] [a, b] [a,b] 上连续。
  2. f f f 在开区间 ( a , b ) (a, b) (a,b) 上可导。
  3. f ( a ) = f ( b ) f(a) = f(b) f(a)=f(b)

则在开区间 ( a , b ) (a, b) (a,b) 内存在一个数 c c c,使得 f ′ ( c ) = 0 f'(c) = 0 f(c)=0

在给出证明之前,让我们先看一些满足这三个假设的典型函数的图形。图显示了四个此类函数的图形。在每种情况下,图上似乎至少有一个点 ((c, f©)),该点处的切线是水平的,因此 ( f’© = 0 )。因此,罗尔定理是合理的。

在这里插入图片描述
例子 1 让我们将罗尔定理应用于一个运动物体的位置函数 s = f ( t ) s = f(t) s=f(t)。如果物体在两个不同的时刻 t = a t = a t=a t = b t = b t=b 处于相同的位置,则 f ( a ) = f ( b ) f(a) = f(b) f(a)=f(b)。罗尔定理表明,在 a a a b b b 之间的某个时刻 t = c t = c t=c,存在 f ′ ( c ) = 0 f'(c) = 0 f(c)=0;也就是说,速度为0。(当一个球被直接向上抛时,你可以看到这一点是成立的。)

例子 2 证明方程 (x^3 + x - 1 = 0) 恰好有一个实数根。

解答

首先我们使用介值定理(Intermediate Value Theorem)来证明存在一个根。令 f ( x ) = x 3 + x − 1 f(x) = x^3 + x - 1 f(x)=x3+x1。那么 f ( 0 ) = − 1 < 0 f(0) = -1 < 0 f(0)=1<0 f ( 1 ) = 1 > 0 f(1) = 1 > 0 f(1)=1>0。因为 f f f 是一个多项式函数,它在整个区间上是连续的,因此根据介值定理,在 [ 0 , 1 ] [0, 1] [0,1] 区间内存在一个数 c c c,使得 f ( c ) = 0 f(c) = 0 f(c)=0。因此,给定的方程存在一个根。

为了证明该方程没有其他实数根,我们使用罗尔定理(Rolle’s Theorem)并通过反证法来进行论证。假设它有两个根 a a a b b b。那么 f ( a ) = 0 f(a) = 0 f(a)=0 f ( b ) = 0 f(b) = 0 f(b)=0,并且由于 f f f 是一个多项式,它在 ( a , b ) (a, b) (a,b) 上可导并在 [ a , b ] [a, b] [a,b] 上连续。因此,根据罗尔定理,在 ( a , b ) (a, b) (a,b) 内存在一个数 c c c,使得 f ′ ( c ) = 0 f'(c) = 0 f(c)=0

但是,对于微分方程
f ′ ( x ) = 3 x 2 + 1 f'(x) = 3x^2 + 1 f(x)=3x2+1
因为 x 2 ≥ 0 x^2 \geq 0 x20,所以 f ′ ( x ) f'(x) f(x) 永远不可能等于0。这导致了矛盾。因此,方程不能有两个实数根。

我们主要使用罗尔定理来证明以下重要定理,这一定理最初是由另一位法国数学家Joseph-Louis Lagrange提出的。

平均值定理

f f f 是满足以下假设的函数:

  1. f f f 在闭区间 [ a , b ] [a, b] [a,b] 上连续。
  2. f f f 在开区间 ( a , b ) (a, b) (a,b) 上可导。
    那么在 ( a , b ) (a, b) (a,b) 中存在一个数 c c c,使得
    f ′ ( c ) = f ( b ) − f ( a ) b − a f'(c) = \frac{f(b) - f(a)}{b - a} f(c)=baf(b)f(a)
    或者等价地,
    f ( b ) − f ( a ) = f ′ ( c
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值