题目
一个专业的小偷,计划偷窃一个环形街道上沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 ,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警 。
给定一个代表每个房屋存放金额的非负整数数组 nums
,请计算 在不触动警报装置的情况下 ,今晚能够偷窃到的最高金额。
示例 1:
输入:nums = [2,3,2] 输出:3 解释:你不能先偷窃 1 号房屋(金额 = 2),然后偷窃 3 号房屋(金额 = 2), 因为他们是相邻的。
示例 2:
输入:nums = [1,2,3,1] 输出:4 解释:你可以先偷窃 1 号房屋(金额 = 1),然后偷窃 3 号房屋(金额 = 3)。 偷窃到的最高金额 = 1 + 3 = 4 。
示例 3:
输入:nums = [0] 输出:0
提示:
1 <= nums.length <= 100
0 <= nums[i] <= 1000
注意:本题与主站 213 题相同: 力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台
LCR 090. 打家劫舍 II - 力扣(LeetCode)
题解
思路:先把只有一个房屋和两个房屋的特殊情况分出来。剩下分两种情况,第一家不偷和最后一家不偷。dp[i]表示到nums[i]怎样取是最大值,状态转移方程:dp[i]=Math.max(dp[i-2]+nums[i],dp[i-1])。由于分两种情况,因此dp下标要和start,end对应而非dp[0],dp[1].注意初始化时dp[start+1]=Math.max(nums[start], nums[start+1]),而不一定是=nums[start+1]
代码:
class Solution {
public int rob(int[] nums) {
int length=nums.length;
if(length==1) return nums[0];
if(length==2) return Math.max(nums[0], nums[1]);
return Math.max(dp(nums,0,length-2),dp(nums,1,length-1));
}
public int dp(int[] nums,int start,int end) {
int[] dp=new int[nums.length];
dp[start]=nums[start];
dp[start+1]=Math.max(nums[start], nums[start+1]);
for(int i=start+2;i<=end;i++)
dp[i]=Math.max(dp[i-2]+nums[i],dp[i-1]);
int max=0;
for(int j=0;j<dp.length;j++)
max=Math.max(max, dp[j]);
return max;
}
}