深度学习小白——卷积神经网络可视化(三)

本文基于《Understanding Neural Networks Through Deep Visualization》论文,探讨如何通过软件直观理解神经元对图像的响应。文章介绍了不同正则化方法,如L2正则化、弱正则化和新提出的正则化策略,以改善重构图像的可解释性和自然性,减少极端像素值和不自然结构。
摘要由CSDN通过智能技术生成

此篇主要总结一下《Understanding Neural Networks Through Deep Visualization》这篇论文


https://www.youtube.com/watch?v=AgkfIQ4IGaM介绍视频

这篇论文主要有以下两个贡献:

  1. 开发了一个软件,可以使得人们看到每个神经元对用户提供图片或视频的反实时应。

左上角为输入的图片或视频,左中为任意一个神经元的激活值图片,左下为从此神经元所在层开始的Deconv图片,右上为应用带惩罚项的梯度优化方法得到的九张图

右中为训练集中导致所选神经元激活值最高的9幅图。右下为上述九幅图作为输入时的deconv图。

     2.为了使得重建的图片可解释性更好,更自然,作者提出4中正则化方式,将其结合起来最终得到了效果最好的重建图片。


不用正则项

首先随机为每一个像素赋值,得到一个随机图片,前向传播算出对于网络中某个神经元i的激活值ai(x),然后,反向传播计算该激活值对于之前所有激活值的梯度(即设它梯度为1,然后执行反向传播),最后得到

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值