source:
题意:这是2017中国大学生程序设计竞赛网络选拔赛的题7。题意解释过来相当于要求给定进制下一段区间中有多少个回文数。
思路:这种涉及到区间统计满足要求的数个数,并且要求是关于进制,数的各位的题目,考虑用数位dp。
关于dp数组的维度,一个是进制,一个维度是枚举到的数位pos,一个是状态,故至少三维数组。
关于dp的状态,考虑用当前枚举的这个数的开始位的位置编号,并且用临时数组记录从开始位到当前枚举的数位pos之间已经生成的各位,这样一来:
1、dfs时方便状态转移,当pos还没枚举到一般数位时继续枚举,若超过一半了,用临时数组判断当前枚举位是否满足回文,若满足才继续,不满足即不继续。
2、方便进行memset-dp数组的外提优化,如此设计状态其实就和输入的进制无关(因为进制单独成为一个维度),和区间边界的大小无关(因为前面是limit的话不计数,计数的表示从pos开始可以任意取,而前面临时数组的每一位是什么无所谓,因为它已经确定了不影响的)
代码如下:
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int a[40],b[40];
long long dp[40][40][40];
long long dfs(int base,int pos,int start,int limit,int lead)
{
if(pos==-1) return 1;
if(!lead && !limit && dp[base][pos][start]!=-1) return dp[base][pos][start];
long long ans=0;
int up=limit?a[pos]:base-1;
for(int i=0;i<=up;i++)
{
if(lead && i==0) ans+=dfs(base,pos-1,start-1,limit&&i==up,1);
else if(pos>=(start+1)/2)
{
b[pos]=i;
ans+=dfs(base,pos-1,start,limit&&i==up,0);
}
else if(b[start-pos]==i) ans+=dfs(base,pos-1,start,limit&&i==up,0);
}
if(!lead && !limit) dp[base][pos][start]=ans;
return ans;
}
long long f(int b,int x)
{
int i=0;
while(x>0)
{
a[i++]=x%b;
x=x/b;
}
return dfs(b,i-1,i-1,1,1);
}
int main()
{
int T,L,R,l,r;
long long tot;
scanf("%d",&T);
memset(dp,-1,sizeof(dp)); //必须外提, 不外提会超时!
for(int t=1;t<=T;t++)
{
scanf("%d%d%d%d",&L,&R,&l,&r);
long long ans=0;
for(int i=l;i<=r;i++)
{
tot=f(i,R)-f(i,L-1);
ans+=i*tot+R-L+1-tot;
}
printf("Case #%d: %lld\n",t,ans);
}
return 0;
}