- 博客(40)
- 收藏
- 关注
原创 pytorch入门细讲
目录一、pytorch数据加载及其预处理二、模型创建三、完整模型的训练迭代四、模型保存及加载五、pytorch GPU加速六、pytorch与tensorflow区别七、动态pytorch一、pytorch数据加载及其预处理1.torchvision库torchvision是独立于pytorch的关于图像操作的一些方便工具库。torchvision...
2020-03-11 17:42:12 399
转载 Python库之Pillow(PIL)学习
颜色与RGBA值计算机通常将图像表示为RGB值,或者再加上alpha值(通透度,透明度),称为RGBA值。在Pillow中,RGBA的值表示为由4个整数组成的元组,分别是R、G、B、A。整数的范围0~255。RGB全0就可以表示黑色,全255代表黑色。可以猜测(255, 0, 0, 255)代表红色,因为R分量最大,G、B分量为0,所以呈现出来是红色。但是当alpha值为0时,无论是什么颜色,...
2019-05-30 17:00:06 930
转载 tensorflow中优化器 optimizer详解
在很多机器学习和深度学习的应用中,我们发现用的最多的优化器是 Adam,为什么呢?下面是 TensorFlow 中的优化器,https://www.tensorflow.org/api_guides/python/train在 keras 中也有 SGD,RMSprop,Adagrad,Adadelta,Adam 等:https://keras.io/optimizers/我...
2019-05-23 09:59:32 2323
转载 深度学习过拟合与欠拟合详解
一.过拟合在训练数据不够多时,或者over-training时,经常会导致over-fitting(过拟合)。其直观的表现如下图所所示。随着训练过程的进行,模型复杂度,在training data上的error渐渐减小。可是在验证集上的error却反而渐渐增大——由于训练出来的网络过拟合了训练集,对训练集以外的数据却不work。在机器学习算法中,我们经常将原始数据集分为三部分:训练...
2019-05-23 09:50:06 2183
转载 Tensorflow之训练模型保存与加载实例
在本教程中,我将会解释:TensorFlow模型是什么样的? 如何保存TensorFlow模型? 如何恢复预测/转移学习的TensorFlow模型? 如何使用导入的预先训练的模型进行微调和修改?这个教程假设你已经对神经网络有了一定的了解。如果不了解的话请查阅相关资料。1. 什么是TensorFlow模型?训练了一个神经网络之后,我们希望保存它以便将来使用。那么什么是Ten...
2019-05-16 14:34:27 731
转载 Tensorflow关键API及常用操作
1、tensorflow的基本运作为了快速的熟悉TensorFlow编程,下面从一段简单的代码开始:import tensorflow as tf #定义‘符号’变量,也称为占位符 a = tf.placeholder("float") b = tf.placeholder("float") y = tf.mul(a, b) #构造一个op节点 sess = tf.S...
2019-05-10 16:29:16 198
转载 将TensorFlow训练好的模型迁移到Android APP上(TensorFlowLite)
版权声明:本文为博主原创文章,转载或者引用请务必注明作者和出处,尊重原创,谢谢合作 https://blog.csdn.net/u012328159/article/details/81101074将TensorFlow训练好的模型迁移到Android APP上(TensorFlowLite)1. 写在前面 最近在做一个数字手势识别的APP(关于这个项目,我会再写一篇博客仔细介绍,博...
2019-05-08 19:43:44 1176 1
转载 用TensorFlow lite将MobileNet移植到Android设备上
分类目标为输入一张自行车图片,判断是山地车还是公路车。第一步:在百度图片分别爬取5000张山地车和公路车的图片,放于data/mountain和data/road两个文件夹下第二步:用TensorFlow自带的工具来fine-tuning训练mobilenet:git clone https://github.com/tensorflow/tensorflow.gitcd ...
2019-05-08 16:57:22 1066
转载 轻量级神经网络平台tiny-dnn实践
github: https://github.com/tiny-dnn/tiny-dnn#build先上github下载tiny-dnn的源码这个深度学习框架可以在多平台运行,而且不依赖任何的库,是新人上手的好项目但是这个项目本身不带makefile如果想在ubuntu下面运行,需要先用跨平台的编译工具cmake来生成makefile文件故我先安装一个cmake工具,去下面的官...
2019-05-08 15:04:47 676 1
转载 OpenCV 局部自适应对比度增强ACE算法
图像的对比度增强算法在很多场合都有着重要的应用,特别是在医学图像上,这是因为在众多疾病的诊断中,医学图像的视觉检查时很有必要的。而医学图像由于本身及成像条件的限制,图像的对比度很低。因此,在这个方面已经开展了很多的研究。这种增强算法一般都遵循一定的视觉原则。众所周知,人眼对高频信号(边缘处等)比较敏感。虽然细节信息往往是高频信号,但是他们时常嵌入在大量的低频背景信号中,从而使得其视觉可见性降低。因...
2019-05-07 14:53:38 3923 2
转载 OpenCV图像增强算法实现(直方图均衡化、拉普拉斯、Log、Gamma)
转载请注明: https://blog.csdn.net/dcrmg/article/details/536777391. 基于直方图均衡化的图像增强直方图均衡化是通过调整图像的灰阶分布,使得在0~255灰阶上的分布更加均衡,提高了图像的对比度,达到改善图像主观视觉效果的目的。对比度较低的图像适合使用直方图均衡化方法来增强图像细节。彩色图像的直方图均衡化实现:...
2019-05-07 14:01:41 352
原创 opencv中grabcut算法解读
opencv库函数:grabCut( InputArray _img, InputOutputArray _mask, Rect rect, InputOutputArray _bgdModel, InputOutputArray _fgdModel, int iterCount, int mode )参数说明:img——待分割的源图像,必须是8位3通道(CV_8UC3)图像,在处理的过...
2019-01-18 16:37:03 3412 1
转载 通俗易懂的EM算法
假设现在有两枚硬币1和2,,随机抛掷后正面朝上概率分别为P1,P2。为了估计这两个概率,做实验,每次取一枚硬币,连掷5下,记录下结果,如下:硬币 结果 统计 1 正正反正反 3正-2反 2 反反正正反 2正-3反 1 正反反反反 1正-4反 2 正反反正正 3正-2反 1 反正正反反 2正-3反...
2019-01-11 11:26:38 589
转载 深度学习哪些常用的激活函数及优缺点
互联网提供了大量的信息,我们只需要一个搜索引擎就可以获取。然而,当大量的信息扑面而来,究竟如何区分相关信息和无关信息呢?大脑在得到大量信息时,会努力理解和分类有用信息和不那么有用的信息。而在深度学习中,我们也需要一种类似的机制来分类传入的信息。不是所有信息都是有用的,一些只是噪音。激活函数可以帮助神经网络做这种隔离。它激活有用的信息,并抑制无关的数据点。激活函数如此重要,那么都有哪...
2018-12-15 10:28:05 1942
转载 SURF算法原理与源码分析
如果说SIFT算法中使用DOG对LOG进行了简化,提高了搜索特征点的速度,那么SURF算法则是对DoH的简化与近似。虽然SIFT算法已经被认为是最有效的,也是最常用的特征点提取的算法,但如果不借助于硬件的加速和专用图像处理器的配合,SIFT算法以现有的计算机仍然很难达到实时的程度。对于需要实时运算的场合,如基于特征点匹配的实时目标跟踪系统,每秒要处理8-24帧的图像,需要在毫秒级内完成特征点的搜索...
2018-11-01 20:30:23 1028
转载 图像特征提取三大法宝:HOG特征,LBP特征,Haar特征
(一)HOG特征1、HOG特征:方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过计算和统计图像局部区域的梯度方向直方图来构成特征。Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功。需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Da...
2018-11-01 20:10:22 390
转载 SIFT特征详解
1、SIFT综述尺度不变特征转换(Scale-invariant feature transform或SIFT)是一种电脑视觉的算法用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值点,并提取出其位置、尺度、旋转不变量,此算法由 David Lowe在1999年所发表,2004年完善总结。其应用范围包含物体辨识、机器人地图感知与导航、影像缝合、3D模型建立、手势辨识、影像追踪和动作比...
2018-10-30 14:00:29 2086
转载 通俗易懂TensorFlow!
原创 机器之心 2018-07-02 11:30:51选自jacobbuckman.com作者:Jacob Buckman机器之心编译虽然对于大多数人来说 TensorFlow 的开发语言是 Python,但它并不是一个标准的 Python 库。这个神经网络框架通过构建「计算图」来运行,对于很多新手来说,在理解其逻辑时会遇到很多困难。本文中,来自谷歌大脑的工程师 Jacob Bu...
2018-10-08 15:09:44 1303
转载 奇异值分解(SVD)原理详解
一、奇异值与特征值基础知识: 特征值分解和奇异值分解在机器学习领域都是属于满地可见的方法。两者有着很紧密的关系,我在接下来会谈到,特征值分解和奇异值分解的目的都是一样,就是提取出一个矩阵最重要的特征。先谈谈特征值分解吧: 1)特征值: 如果说一个向量v是方阵A的特征向量,将一定可以表示成下面的形式: 这时候λ就被称为特征向量v对应的特征值,一个矩阵的一组特...
2018-09-26 11:55:05 2023
转载 OpenCV3 SVM ANN Adaboost KNN 随机森林等机器学习方法对OCR分类
转摘自http://www.cnblogs.com/denny402/p/5032839.htmlopencv3中的ml类与opencv2中发生了变化,下面列举opencv3的机器学习类方法实例:用途是opencv自带的ocr样本的分类功能,其中神经网络和adaboost训练速度很慢,效果还是knn的最好;#include <opencv2/opencv.hpp>#...
2018-09-25 16:17:33 553
转载 Python 元组
Python的元组与列表类似,不同之处在于元组的元素不能修改。元组使用小括号,列表使用方括号。元组创建很简单,只需要在括号中添加元素,并使用逗号隔开即可。如下实例:实例(Python 2.0+)tup1 = ('physics', 'chemistry', 1997, 2000)tup2 = (1, 2, 3, 4, 5 ) tup3 = "a", "b", "c", "...
2018-09-20 16:38:21 242
转载 Python 列表(List)
序列是Python中最基本的数据结构。序列中的每个元素都分配一个数字 - 它的位置,或索引,第一个索引是0,第二个索引是1,依此类推。Python有6个序列的内置类型,但最常见的是列表和元组。序列都可以进行的操作包括索引,切片,加,乘,检查成员。此外,Python已经内置确定序列的长度以及确定最大和最小的元素的方法。列表是最常用的Python数据类型,它可以作为一个方括号内的逗号分...
2018-09-20 15:51:06 244
转载 8种常见机器学习算法比较
简介机器学习算法太多了,分类、回归、聚类、推荐、图像识别领域等等,要想找到一个合适算法真的不容易,所以在实际应用中,我们一般都是采用启发式学习方式来实验。通常最开始我们都会选择大家普遍认同的算法,诸如SVM,GBDT,Adaboost,现在深度学习很火热,神经网络也是一个不错的选择。假如你在乎精度(accuracy)的话,最好的方法就是通过交叉验证(cross-validation)对各个算法...
2018-09-13 19:48:11 15732 2
转载 机器学习算法对比分析
各种机器学习的应用场景分别是什么?例如,k近邻,贝叶斯,决策树,svm,逻辑斯蒂回归和最大熵模型。k近邻,贝叶斯,决策树,svm,逻辑斯蒂回归和最大熵模型,隐马尔科夫,条件随机场,adaboost,em 这些在一般工作中,分别用到的频率多大?一般用… 关于这个问题我今天正好看到了这个文章。讲的正是各个算法的优劣分析,很中肯。https://zhuanlan.zhihu.com/p/...
2018-09-13 19:41:23 3916 1
转载 通俗易懂的Adaboost算法原理分析和实例+代码
【尊重原创,转载请注明出处】 http://blog.csdn.net/guyuealian/article/details/70995333 本人最初了解AdaBoost算法着实是花了几天时间,才明白他的基本原理。也许是自己能力有限吧,很多资料也是看得懵懵懂懂。网上找了一下关于Adaboost算法原理分析,大都是你复制我,我摘抄你,反正我也搞不清谁是原创。有些资料给出的Adaboo...
2018-09-13 17:03:56 717
转载 机器学习的分类与主要算法对比
重要引用:Andrew Ng Courera Machine Learning;从机器学习谈起;关于机器学习的讨论;机器学习常见算法分类汇总;LeNet Homepage;pluskid svm 首先让我们瞻仰一下当今机器学习领域的执牛耳者: 这幅图上的三人是当今机器学习界的执牛耳者。中间的是Geoffrey Hinton, 加拿大多伦多大学的教授,如今被聘为“Google大脑”的...
2018-09-13 16:59:19 618
转载 Android开发入门经典实例
开发实例概述今天带大家做一个简单的Android App,这个App会显示创新工程实践老师们的照片和信息,不妨先看一看效果:虽然这个App非常简单,但是涉及到了Android开发中的一些关键知识,比如:配置开发环境 App中一个屏幕的抽象:Activity 屏幕之间的跳转:Intent 构成屏幕展示的视图组件:显示图片的ImageView,显示文字的TextView,把组件组...
2018-09-06 20:09:30 339
转载 Opencv中Mat结构体中元素的获取与赋值
【OpenCV3图像处理】Mat中元素的获取与赋值 ( 对比.at<>()函数 和 .ptr<>()函数)2017年04月12日 10:08:55 阅读数:7542 标签: opencvopencv3 更多个人分类: Opencv所属专栏: OpenCV3 入门版权声明:本文为博主原创文章,欢迎转载,请注明出处 https://blog.csdn.net/u...
2018-09-03 20:33:24 3555
转载 OpenCV Mat类详解和用法
我们有多种方法可以获得从现实世界的数字图像:数码相机、扫描仪、计算机体层摄影或磁共振成像就是其中的几种。在每种情况下我们(人类)看到了什么是图像。但是,转换图像到我们的数字设备时我们的记录是图像的每个点的数值。 例如在上图中你可以看到车的镜子只是一个包含所有强度值的像素点矩阵。现在,我们如何获取和存储像素值可能根据最适合我们的需要而变化,最终可能减少计算机世界内的所有图...
2018-08-31 12:18:53 33038 2
转载 机器学习算法模型评估
以下第一部分内容转载自:机器学习算法中的准确率(Precision)、召回率(Recall)、F值(F-Measure)是怎么一回事摘要:数据挖掘、机器学习和推荐系统中的评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure)简介。引言:在机器学习、数据挖掘、推荐系统完成建模之后,需要对模型的效果做评价。业内目前常常采用的评价指标有准确率(Pr...
2018-08-22 14:47:00 1036
转载 皮肤检测技术
好久没写博客了,因为最近都忙着赶项目和打比赛==| 好吧,今天我打算写一篇关于使用opencv做皮肤检测的技术总结。那首先列一些现在主流的皮肤检测的方法都有哪些:RGB color space Ycrcb之cr分量+otsu阈值化 YCrCb中133<=Cr<=173 77<=Cb<=127 HSV中 7<H<20 28<S<256 50&...
2018-08-13 16:09:24 1106
转载 Python快速入门之numpy、matplotlib
原文出处: 達聞西 给深度学习入门者的Python快速教程基础篇 numpy和Matplotlib篇本篇部分代码的下载地址:https://github.com/frombeijingwithlove/dlcv_for_beginners/tree/master/chap55.3 Python的科学计算包 – Numpynumpy(Numerical Python ex...
2018-07-27 15:53:41 1045
转载 Python之pandas用法
Pandas的主要数据结构:Dimensions Name Description 1 Series 1D labeled homogeneously-typed array 2 DataFrame General 2D labeled, size-mutable tabular structure with potentially heteroge...
2018-07-27 15:26:20 347
转载 Python_sklearn机器学习库学习笔记(五)k-means(聚类)
# K的选择:肘部法则如果问题中没有指定K的值,可以通过肘部法则这一技术来估计聚类数量。肘部法则会把不同K值的成本函数值画出来。随着K值的增大,平均畸变程度会减小;每个类包含的样本数会减少,于是样本离其重心会更近。但是,随着K值继续增大,平均畸变程度的改善效果会不断减低。K值增大过程中,畸变程度的改善效果下降幅度最大的位置对应的K值就是肘部。import numpy as np...
2018-07-27 15:01:09 1329
转载 Python之NumPy的详细教程
转载 http://blog.csdn.net/chen_shiqiang/article/details/51868115 先决条件在阅读这个教程之前,你多少需要知道点python。如果你想从新回忆下,请看看 Python Tutorial .如果你想要运行教程中的示例,你至少需要在你的电脑上安装了以下一些软件:Python NumPy这些是可能对你有帮助的:ipytho...
2018-07-27 14:48:14 681
转载 Python之Numpy详细教程
NumPy - 简介NumPy 是一个 Python 包。 它代表 “Numeric Python”。 它是一个由多维数组对象和用于处理数组的例程集合组成的库。Numeric,即 NumPy 的前身,是由 Jim Hugunin 开发的。 也开发了另一个包 Numarray ,它拥有一些额外的功能。 2005年,Travis Oliphant 通过将 Numarray 的功能集成到 Num...
2018-07-19 14:00:12 695
转载 通俗易懂的粒子滤波算法(PF)
在论文中看到粒子滤波的知识点,在网上找到的几篇讲的很易的文章:http://blog.csdn.net/heyijia0327/article/details/40899819http://blog.csdn.net/heyijia0327/article/details/40929097http://blog.csdn.net/heyijia0327/articl...
2018-07-11 09:05:33 25878 14
转载 超级强大的vim配置(vimplus)
From : http://www.cnblogs.com/highway-9/p/5984285.htmlFrom : http://www.cnblogs.com/ma6174/archive/2011/12/10/2283393.htmlFrom : http://www.cnblogs.com/youxia/p/linux002.htmlFrom : http://blog.csdn.ne...
2018-07-10 13:49:44 7059 1
转载 VS2017常用快快捷键
项目相关的快捷键 Ctrl + Shift + B = 生成项目 Ctrl + Alt + L = 显示 Solution Explorer(解决方案资源管理器) Shift + Alt+ C = 添加新类 Shift + Alt + A = 添加新项目到项目 编辑相关的键盘快捷键 Ctrl + Enter = 在当前行插入空行 Ctrl + Shift + Enter = 在当前行...
2018-07-10 11:54:02 1010
转载 手把手教你git的使用
一:Git是什么? Git是目前世界上最先进的分布式版本控制系统。 二:SVN与Git的最主要的区别? SVN是集中式版本控制系统,版本库是集中放在中央服务器的,而干活的时候,用的都是自己的电脑,所以首先要从中央服务器哪里得到最新的版本,然后干活,干完后,需要把自己做完的活推送到中央服务器。集中式版本控制系统是必须联网才能工作,如果在局域网还可以,带宽够大,速度够快,如果在互联网下,如果网速...
2018-07-10 11:41:17 202
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人