day1
LGBM与XGBOOST:
XGBoost是在GBDT(梯度提升决策树)基础上发展而来,针对传统GBDT算法做了很多细节改进,包括损失函数、正则化、切分点查找算法优化、稀疏感知算法、并行化算法设计等等
LightGBM 是一个梯度 boosting 框架,使用基于学习算法的决策树。它可以说是分布式的,高效的
与以往的算法比较①histogram算法替换了传统的Pre-Sorted,某种意义上是牺牲了精度(但是作者声明实验发现精度影响不大)换取速度,直方图作差构建叶子。(xgboost的分布式实现也是基于直方图的,利于并行)②带有深度限制的按叶子生长 (leaf-wise) 算法代替了传统的(level-wise) 决策树生长策略,提升精度,同时避免过拟合危险。
LightGBM作者对模型的一些解释:
https://www.zhihu.com/question/51644470/answer/130946285
两者的结构主要区别:在过滤数据样例寻找分割值时,LightGBM 使用的是全新的技术:基于梯度的单边采样(GOSS);而 XGBoost 则通过预分类算法和直方图算法来确定最优分割。
选择LGBM替换XGBOOST的理由:
1.在速度上LGBM比XGBOOST的快十倍甚至百倍以上
2.LGBM与xgboost的精度不相上下
下采样
https://blog.csdn.net/weixin_44451032/article/details/99974665