自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(215)
  • 资源 (10)
  • 论坛 (36)
  • 收藏
  • 关注

原创 大量APT病毒样本数据下载

1. 引入在用机器学习、深度学习做计算机安全类课题研究时,真实样本的分析,是非常重要的。APT是advanced persistent threat,高级持续性威胁。指的是精心策划,使用高级的技术(比如0day),并长期进行(有耐心)的一类网络spy活动。一般是country对country之间的攻击手段。这类样本难以获取,研究起来也就不那么容易了。2. 3500个APT样本github上已经有人上传了3500个样本,在这里就可以下载到:https://github.com/cyber-rese

2020-11-26 23:25:34 28

原创 理解词嵌入除偏

1. 引入机器学习已经被用到各行各业做辅助决策了,甚至是制定极其重要的决策。所以,我们应该尽可能的确保它不受非预期形式偏见的影响,比如性别歧视、种族歧视等等。下面介绍一种减少或消除这些偏见的影响,以消除“性别偏见”为例来说明算法的具体过程。2. NLP中性别偏见的例子在NLP中,由于语料的原始作者写作时,可能会自带自己的偏见,所以训练模型得到的词嵌入也会学到这种偏见。比如下图中的一些NLP任务,通过词嵌入,得到的结果(红框中)是具有明显的偏见的。训练集中的原始语料,是词嵌入带有性别歧视、种族歧视

2020-11-08 23:40:35 33

原创 词嵌入与情绪识别

1. 引入情绪识别是NLP中的比较重要的通用任务。对于情绪识别来说,通常标注的数据量都会比较小,一般语料中也就一万到十万个单词。这样小的语料,对于训练NLP模型来说,是一个难点。下面给出两种方法,借助于词嵌入,我们都能在比较小的语料中,得到不错的模型。2. 方法一:平均词向量具体步骤:获取各个单词的词向量直接用句子中,每个单词的one-hot编码,乘以词嵌入矩阵,得到每个单词的词向量将句子中各个单词词向量相加后取平均,得到一个新向量,用于表示该句子用这个新的词向量,送到sof

2020-10-09 22:08:07 28

原创 介绍一个可以轻松下载病毒样本的数据库

引入病毒样本有一些知名的数据集,但一般这些数据集中的样本都比较老,并且申请这些数据集的流程复杂,耗时长。有的数据集只有meta信息,没有完整的样本。而病毒样本又是各大安全公司的资产,研究者也不会轻易拿到新样本。所以病毒样本的收集是比较麻烦的。MalwareBazaar Database从如下介绍,可以看出,MalwareBazaar数据库是与安全产商合作后,构建的一个公开的病毒样本数据库。MalwareBazaar is a project operated by abuse.ch. The p

2020-09-30 11:24:45 174

原创 用Androguard静态检测APK行为:收集手机号

1. 引入有些APK运行后,会收集你的手机号。有收集手机号这种行为的APP,就有可能把你的手机号泄露出去。那么,如何用一段python代码,来检测APK是否有这种收集手机号的行为呢?2. 原理从参考1中,我们可以知道,只要你写APP时,满足如下两个条件,就会让你的APP有收集本机手机号的行为。在manifest中添加如下权限<uses-permission android:name="android.permission.READ_PHONE_STATE"/> 在java中

2020-09-06 22:07:17 63

原创 skip-gram与负采样

1. skip-gram模型skip-gram是word2vec中的主要模型之一(另一个模型是CBOW)。简单来说,CBOW是给定上下文,来预测input-word;而skip-gram是给定input-word,来预测上下文。下面我们来理解skip-gram模型。首先,给定句子如下The man who passes the sentence should swing the sword.-选择passes为中心词,window-size设置为3,则训练过程如下图通过该图可以大致理解skip-

2020-08-19 23:19:10 64

原创 Word Embedding与analogy reasoning(词嵌入与类比推理的过程)

1. 引入Word Embedding是"词嵌入"的意思,这是语言表示的一种方式。它可以让算法理解一些类似的词。简单理解,就是词向量,代替one-hot编码做词向量。词嵌入比one-hot编码有更多优点:词嵌入可以用一个低维向量来表示词向量,而one-hot编码一般维度一般都比较高词嵌入可以表征词的相似性,语义上相似的词,其词向量也比较接近通用性强,在分类,回归,NER等应用中,都可以使用词嵌入表示的词向量,还有一个很常见的应用,是 analogy reasoning (类比推理

2020-08-06 23:43:14 105

原创 获得了Arctic Code Vault Contributor勋章

今天发现自己获得了Arctic Code Vault Contributor勋章。查了一下,是gthb搞的一个“北极代码库贡献者”,自己有3个项目被放到北极了,就是下面这个地方,像电影里看到的一样。gthb计划把这些收录的代码存放1000年,留给下一代人使用。获此殊荣,小激动了一把,哈哈。...

2020-07-17 17:42:26 6675 1

原创 详解softmax

1. 引入在分类问题中,我们常用softmax和sigmoid作为神经网络输出层的激活函数,这样可以让网络输出样本属于各个类别的概率值。在二分类问题中,常用sigmoid。多分类问题中,使用softmax,它能把多个神经元的输出,映射到(0,1)区间内,可以把各个输出值看成概率来理解,即是样本属于某一个类别的概率,从而做到多分类。简单来说,softmax就是能把一组数据,转换为各个数据对应的概率值,如下所示:数据:[-1.1, -4.9, 1.2, -2.4, 2.2, 2.4]softmax输

2020-07-10 21:58:24 115

原创 MITRE知识库中Android行为列表
原力计划

1. 引入MITRE ATT&CK的介绍来看,它是一个攻击者(adversary)策略(tactic)知识库(knowledge base of adversary tactics and techniques)。该框架理顺了攻击者渗透网络、入侵主机、提升权限、隐秘移动和渗漏数据的攻击链。它从整个攻击路径的顺序,对企业级平台和移动平台都做了详细的说明。不同的操作系统都有不同的攻击方式,所以它对Windows,macOS,Linux,Cloud,Android和iOS都有相应的描述。以Androi

2020-06-30 23:28:16 213

原创 理解词嵌入WordEmbedding

1. 引入词嵌入,英文为 Word Embedding,这是语言表示的一种方式。它可以让算法理解一些类似的词。2. 词表示:one-hot我们可以用one-hot向量来表示词,如下图所示。这种表示方式,我们需要首先获取一个字典,比如字典中有100000个词。对每一个词,都得到一个向量,其中该词对应位置上置一,其他位置置零。比如man这个词位于字典的第5391个位置,则我们为这个单词创建一个100000维度的向量,其中第5391个位置处值为1,其他位置值为0.这种方法的缺点,是它把每个词孤立了

2020-06-19 23:19:31 127

原创 深层循环神经网络

1. 引入我们学过的序列模型,RNN, GRU, LSTM,以及双向的RNN, GRU, LSTM,他们每一个模型都可以独当一面。如果我们想学习更复杂的函数,通常我们就会把多个RNN堆叠到一起,构建更深层次的网络。接下来我们就讲述如何构建深层次的循环神经网络。2. 深层RNN原理见下图图中左边是传统的多个全连接层组成的深层网络,把RNN按照这种模式一层一层组合在一起,得到右边的深层RNN网络。在做计算时,比如下图中a22隐层,需要其他时刻与其他层的输出作为输入,所以计算量是很大的。3.

2020-05-19 23:01:12 146

原创 双向RNN原理

1. 引入我们之前已经了解了RNN中的GRU[2]和LSTM[3]。怎么样才能进一步优化RNN这样的模型呢?就是使用双向RNN,它能使得我们在序列的某点处,不仅获取之前的信息,还能获取将来的信息。将来的信息是什么意思呢?为什么根据之前的信息还不足够网络做决策?我们看下面的一个例子:用传统RNN做NER,判定某个单词是否为人名。例子中给出的两句话,第一句话中的Teddy不是人名(是泰迪熊...

2020-05-05 22:44:01 428

原创 理解LSTM

注意:请先看解释GRU的博客,否则不容易看懂本文1. 引入GRU(门控循环单元)允许我们在序列学习中,学习非常深的连接。其他类型的单元,也能做到这个效果,比如本文要讲的LSTM,它甚至比GRU的效果要好(更通用,更强大)。下面是对GRU做的一个总结,需要深入了解的,可以先看(补充GRU博客链接)。2. LSTMLSTM是长短记忆网络(Long Short Term Memory un...

2020-04-19 20:43:06 127

原创 RNN中的门控循环单元GRU
原力计划

1. RNN隐层单元结构可视化下面是一个基本的RNN隐层单元结构:其中,a是上一个时刻的激活函数输出值,x是当前时刻的输入,y是当前时刻的输出。要理解这个单元结构,需要注意2点:a与x结合,通过激活函数的作用后,有两个分支,一个分支作为下一个时刻的输入a另一个分支通过softmax作用后,作为当前时刻的输出y2. GRU单元中的符号GRU(Gated Recurrent Uni...

2020-04-07 21:52:24 559

原创 RNN中的梯度消失与梯度爆炸

1. 引入我们可以在[1]中,看到RNN的结构,如下图所示。假设我们输入两个句子如下:The cat, which already xxx yyy zzz …, was full.The cats, which alrady xxx yyy zzz …, were full.这两句话中,“xxx yyy zzz …”表示句子中间有很长的文本,此处略去。我们只看单数与复数,最后一个逗...

2020-03-17 20:50:35 208

原创 java源代码转jar包

引入jar文件具有跨平台、数据压缩、多文件封装的优点,所以我们常将java源程序和其他的文件(比如资源文件、签名)打包到一起,变成jar包。这样对java程序的部署会更方便,也更安全。用IDEA等IDE,可以直接将java文件转换为jar包。本文讲解如何用JDK命令来转换。本文实验环境windows10JDK最简单的jar包jar包中可以含有很多文件(具体见[1]),最简单的ja...

2020-03-05 21:21:11 783

原创 详解语言模型

语言模型,能够告诉你,某个特定的句子,出现的概率是多少

2020-02-26 20:30:53 186

原创 将java文件转换为DEX并在Android真机运行

引入DEX文件在Android中很重要,它与APK瘦身、热修复、插件化、应用加固、逆向工程、64K方法数限制都有关系[1]。所以,我们先来认识一下本文的主角,DEX文件。Dalvik虚拟机在Android中的作用,与JVM在Linux中的作用类似。我们用java语言来开发Android程序,但Android的Dalvik并不能直接运行java字节码(.class文件)。所以需要把.class...

2020-02-12 21:03:36 459

原创 RNN的5种典型结构

引入我已经在文章[1]中介绍了一些序列模型的应用,比如“中文翻译为英文”,“NER命名实体识别”,“歌词生成”,“情绪识别”。也在文章[2]中介绍了RNN结构的基本原理。那问题来了,要实现“中译英”和“歌词生成”,我们选用的RNN结构是一样的吗?RNN有哪些典型的结构,分别对应哪些应用场景呢?RNN的5种典型结构首先,直接给出RNN的5中典型结构,如下图。然后我们依次讲解。1. O...

2020-01-27 21:49:03 849

原创 APK反编译后插入调试代码动态运行

1. 引入当我们拿到一个APK,没有源代码,该怎么样去研究APK的核心逻辑呢?限于运行环境的复杂,我们会首先使用静态分析的方式,大概可以想出这样一些静态分析APK的方法:用apktool直接将APK转换为smali程序,再阅读smali代码(比较痛苦)用dextojar将APK中的DEX转换为jar,再用JD-JUI来查看其java代码用JEB,直接查看java或smali(...

2020-01-07 22:53:14 749

原创 详解python中的*args与**kwargs的用法

引入用itertools做多个item的组合问题,使用方式如下import itertoolsall_list = [['A', 'B'], ['C', 'D'], ['E','F']]list(itertools.product(*all_list))这段代码会生成三个list中元素的组合结果,如下所示:[('A', 'C', 'E'), ('A', 'C', 'F'), ('...

2019-12-28 20:09:56 248

原创 理解RNN的结构+特点+计算公式

引入在某一些情况下,我们是无法使用标准的全连接神经网络的。比如,预测句子中哪几个单词是人名,如果使用标准的全连接神经网络,网络结构如下:如果使用这种结构,会存在两个问题输入句子长度和输出向量的维度,可能会不一样。对不同的样本,其输入/输出维度都不同。当然你可以采用zero padding,将每个句子都填充到最大长度,但仍然不是一种很好的方式改结构无法共享从文本不同位置上学到的...

2019-12-08 21:39:23 563 1

原创 多个列表中的元素做组合的逻辑与python实现

引入本文组合逻辑的讲解,与代码,都是基于python的。我们在实际编程中,会遇到多个元素做组合的过程,比如,给定如下4个列表list1 = ['A', 'B']list2 = ['C', 'D']list3 = ['E','F','G']list4 = ['H', 'I']列表中的元素(A/B/C等),这里用的是string。实际情况中,也可以是int,或其他类型的instance...

2019-11-25 23:11:27 472

原创 序列模型用途介绍及数学符号

1. 序列模型用途之所以要用到序列模型,是因为,在现实生活中,我们的很多数据都具有连续的关系,比如语音识别:根据音频数据,识别为语言文本音乐生成:给定0个或某几个音节,自动生成歌曲情感分析:根据一段文本,来判断其情绪DNA序列分析:从给定的DNA序列中,标记出值得关注的某一段序列机器翻译:德语文本转英文视频行为识别:根据视频中一段连续的画面,判断画面中人的行...

2019-11-07 21:52:30 366

原创 详解python3的新特性:函数注解(Function Annotations)与类型注解

文章目录引入函数注解变量注解静态类型检查模块mypy总结参考引入我们在阅读python3写的代码时,会看到类似如下的程序:def add(x: int, y: int) -> int: return x+y初步看上去,与python2相比,这个函数在定义上,多了3个int。前两个int表示输入数据的类型,"->"符号后面的int,表示返回值类型。在python中,是...

2019-10-18 22:56:43 1463

原创 浅析Attention机制

引入Attention机制目前在深度学习领域应用的越来越多了,在CV和NLP领域都有大量应用。使用keras的Attention模块,可以说是能随意为深度学习模型插上Attention的翅膀了。那Attention机制的基本原理是什么?它有哪些优缺点呢?Attention机制的提出Attention机制是九几年在CV领域被提出的思想[1]。然后2014年Google DeepMind发表...

2019-10-08 22:29:26 115 1

原创 MITRE ATT&CK安全知识库介绍

1. 引入通过学习MITRE ATT&CK,能快速对安全领域做一个全面的了解。本文只是对MITRE ATT&CK做一个初步介绍,更深入的内容后续还会再写。2. MITRE是什么从wikipedia[1]上可以看到介绍:The Mitre Corporation (stylized as The MITRE Corporation and MITRE) is an Amer...

2019-09-26 21:18:04 6364

原创 IDA动态调试Android进程的配置步骤

确保ADB能正常连接手机(装了AndroidStudio后,ADB位于C:\Users\xxx\AppData\Local\Android\Sdk\platform-tools)把IDA中的\dbgsrv\android_server复制到手机adb rootadb push C:\ida\dbgsrv\android_server /data/local/tmp/and...

2019-09-02 20:56:44 549

原创 MongoDB从零安装到SHELL管理到远程连接配置与编程访问

引入本文主要讲下面几点:在CentOS下安装mongo的过程安装完成后,本地访问mongo以及在mongo shell下基础的mongo管理命令无法远程访问mongo的解决方法本文环境CentOS Linux 7 (Core)MongoDB 4.2远程连接:Windows 10, 远程GUI工具 studio3T1. CentOS下安装MongoDB的步骤m...

2019-08-18 21:11:15 643

原创 详解多分类模型的Micro-F1/Precision/Recall计算过程

引入关于准确率(accuracy)、精度(precision)、查全率(recall)、F1的计算过程,之前写过一篇文章[1]。根据文章[1]中的公式,我们可以知道,精度(precision)、查全率(recall)、F1的计算,是针对于二分类器来说的。他们的计算,只与y_true/y_pred有关,也要求y_true/y_pred中,只含有0和1两个数。对二分类模型来说,可以直接调用skl...

2019-08-01 20:19:51 4731

原创 详解多分类模型的Macro-F1/Precision/Recall计算过程

引入关于准确率(accuracy)、精度(precision)、查全率(recall)、F1的计算过程,之前写过一篇文章[1]。根据文章[1]中的公式,我们可以知道,精度(precision)、查全率(recall)、F1的计算,是针对于二分类器来说的。他们的计算,只与y_true/y_pred有关,也要求y_true/y_pred中,只含有0和1两个数。对二分类模型来说,可以直接调用skl...

2019-07-19 22:34:24 12553 3

原创 kaldi中SHELL调用C++程序过程源码分析

引入kaldi真正的核心源码,都是C++写成的,这个结论可以从如下两点得以确认:(1)在kaldi的源码kaldi/src目录下,能看到很多扩展名为.cc的源程序,这是linux下C++源码;(2)在源码中,比如kaldi\src\featbin\compute-mfcc-feats.cc,可以看到static_cast<uint16>和std::string这样的代码,这是C+...

2019-07-05 23:24:20 673

原创 学完deeplearning.ai的Course1和Course4

文章目录说明学习过程中写的文章Course1: Neural Networks and Deep Learning内容与学习过程记录Course4:Convolutional Neural Networks内容与学习过程记录说明从2018年开始,断断续续在网易云课堂学完了吴恩达在deeplearning.ai讲授的两门经典课,记录一下:Course1:《神经网络和深度学习》,Neural ...

2019-06-14 22:23:58 130

原创 kaldi的编译安装与报错解决方法

引入kaldi是语音识别领域,最常用的一个工具。它自带了很多特征提取模块,能提取MFCC/ivector/xvector等语音特征;也自带了很多语音模型代码,可以直接使用或重新训练GMM-HMM等模型;它还支持GPU进行训练。可以说是功能很强大了。更厉害的是,你只需要简单的SHELL编程,就能使用kaldi。kaldi作为一个工具,不需要像库一样进行大量编程,所以使用门槛其实不高。但是,它...

2019-06-03 22:21:12 6885

原创 用surprise实现SVD协同过滤推荐算法对本地数据做推荐

引入surprise是Simple Python Recommendation System Engine的缩写,是一个为了实现推荐系统的框架。它自带了SVD,user-based,item-based协同过滤算法等多种推荐算法,接口简单,功能强大。但官方文档写的并不好,笔者花了不少时间,都没有找到如何预测某个user对某个item进行打分这样的基础用法,所以把摸索后得到的经验分享于此。数据集...

2019-05-21 21:56:17 2756

原创 通过对比Bagging/Boosting/RF/GDBT来理解XGB

引入用过XGB模型的人,都大致知道,XGB是由多棵树组成的,像一片森林,这是一种集成学习方法。但是,这片森林里的每棵树都是通过纯度计算与分支划分得到的吗?多棵树是如何组合(集成)在一起共同做决策的呢?XGB和RandomForest是什么区别?XGB和GDBT又有什么区别呢?如何才能解释这些问题首先,我们需要理解几个概念(1)集成学习集成学习分为三种算法:Bagging,Boosting...

2019-05-05 22:19:35 456

原创 linux下如何将大文件分为多个小文件

背景我们跑在linux上程序,有时候打出的log很大,动不动就是几个G。即不方便查阅,也不方便下载、传输。有没有办法(命令最好)把这样的大文件拆分为多个小文件呢?拆分文件的Linux命令(1)将文件按照存储大小拆分如下命令,将954M大小的文件httpd.log,按照500MB每个文件大小进行拆分。拆分后,变为xaa和xab两个文件,每个文件大小为477M。# split -b 500M...

2019-04-27 08:40:33 3229

原创 CNN在自动驾驶中的不同结构

1. 引入真实的驾驶场景,是根据一些测量值,来预测汽车的油门、刹车、方向盘角度的过程。这些测量值可能包括:汽车速度,加速度,转向角,GPS坐标,陀螺仪角度等值,当然也少不了摄像机拍摄的车辆前方的图像。这其中CNN最擅长做的,是图像数据的处理,包括物体识别(行人,车辆,车道,交通标志),也包括回归(方向盘角度预测)。自动驾驶领域另CNN大放光彩的,是Intel发布的一篇paper[1]:End ...

2019-04-08 22:17:14 697

原创 Gartner对移动设备应用的一个预测

正文从一篇博客[1]中,窥得一个Gartner的预测结论:Gartner predicts that 80% of worker tasks will take place on a mobile device by 2020.这个预测是写在这篇报告中的:(Gartner, “Prepare for Unified Endpoint Management to Displace MDM an...

2019-03-20 09:36:58 368

nForm 国际化开发一例

本例简要说明用VS2012开发WinForm程序时,如何将hardcode取出放入.resx文件,并让程序根据不同国家的OS自动选择资源并加载,以适应不同语言的环境。为了突出重点,只说明Button/Label和代码中hardcode的处理方法,简单易懂,其它原理类似。具体说明见我的blog对应资源名称的文章。

2013-07-03

用OpenCV在MFC Dialog中Picture控件上显示摄像头采集实时视频

用OpenCV在MFC Dialog中Picture控件上显示摄像头采集实时视频

2013-04-24

最简单的linux字符设备驱动

一个最简单的字符设备驱动程序,包括LDD第三版前三章的内容。 关键是书中并未讲的太细,关于mknod以及如何自己写一个程序使用自己的驱动,我的代码中有详细的过程,也在blog中写明了驱动模块的思路以及常见问题的解决思路。主要是自己学习所用,现在共享出来大家一起学习吧! 考虑到linux下对中文的支持随版本而异,所以源码并未详细注释,详细注释的代码见我博客。

2012-11-25

SendMessage()两个程序通信与MFC中添加新消息

如何使用SendMessage()使两个程序通信,如何为MFC手动添加系统没有的消息,看了源码你就知道了

2011-03-14

简单的winsock编程客户机、服务器示例

参考《Visual C++网络高级编程》(陈坚&陈伟)人民邮电出版社。2.2节,自己写了客户端程序和服务器程序,winsock编程参考书中内容。 我写的这个服务器程序能将接收到的客户机程序显示出来,程序写的非常简单,注释详细,便于学习参考。

2011-03-09

数据结构(C#语言版)

C#语言描述的数据结构,清晰! 本书分为8章,第1章介绍了数据结构和算法的基本概念及本书用到的数学和C#的知识;第2章至第6章分别讨论了线性表、栈和队列、串和数组、树型结构和图结构等常用的数据结构及其应用,以及在.NET框架中相应的数据结构;第7、8两章分别讨论了排序和查找常用的各种方法及其应用以及在.NET框架中相应的算法。

2011-02-21

操作系统概念第六版(Operating+System+Concepts+6th+Edition)的课后习题答案

操作系统概念第六版的课后习题答案,英文版,超清晰

2011-02-21

OpenCV参考手册

OpenCVReferenceManual,清晰、可复制;方便搜索关键字,我写程序时查找起来很舒服的~

2011-02-21

电院面试问题汇总(关于电院面试的问题)

电院面试问题汇总(关于电院面试的问题),很好,很强大

2009-09-20

DS18B20驱动程序(C语言)

DS18B20驱动程序(C语言)

2008-07-21

51串口通信不准?!!!!

发表于 2008-07-30 最后回复 2020-03-07

ybdesire的留言板

发表于 2020-01-02 最后回复 2020-01-02

为什么用int型变量去存放字符

发表于 2011-12-05 最后回复 2018-03-19

http://mp.blog.csdn.net/mdeditor这里的markdown版本在哪里发布摘要?

发表于 2018-01-09 最后回复 2018-01-09

请教如何开发图形化编程软件

发表于 2013-06-20 最后回复 2013-08-24

socket编程server接收到的数据会不会错位

发表于 2012-12-04 最后回复 2013-01-12

帮忙看一个不稳定的异步UDP接收数据程

发表于 2012-07-23 最后回复 2012-12-04

虚继承时C++对象内存布局的疑问

发表于 2012-07-03 最后回复 2012-12-04

如何写一个linux脚本,给程序A输入字符串?

发表于 2012-02-13 最后回复 2012-11-23

winServer,ping不通

发表于 2012-06-09 最后回复 2012-11-23

请教如何在linux下开发窗口程序

发表于 2011-07-16 最后回复 2012-11-23

询问MAC OS下的界面开发技术

发表于 2011-07-17 最后回复 2012-11-23

sql server并发问题发生的情况

发表于 2012-07-20 最后回复 2012-07-21

如何批量修改word书签名

发表于 2012-06-03 最后回复 2012-07-03

如何读取android手机收到的彩信,将图片显示到PC机

发表于 2012-05-12 最后回复 2012-05-12

在c语言中如何删除文件中的内容

发表于 2008-06-07 最后回复 2012-01-06

由strcpy的测试用例想到的

发表于 2011-12-21 最后回复 2011-12-28

编写strcpy并测试的难点

发表于 2011-12-21 最后回复 2011-12-24

一个fork的问题

发表于 2011-10-29 最后回复 2011-10-30

如何根据关键字查找某个目录下的所有文件

发表于 2011-10-27 最后回复 2011-10-29

关于C++程序的内存分配

发表于 2011-10-01 最后回复 2011-10-02

成员函数后面const的作用

发表于 2011-10-01 最后回复 2011-10-01

如何修改ntdll.dll中的代码

发表于 2011-03-23 最后回复 2011-03-27

Win32是如何将数据显示在显示器上呢?

发表于 2011-03-13 最后回复 2011-03-16

如何逆向获取另一软件运行时文本框中不断变化的数字

发表于 2011-02-22 最后回复 2011-03-02

请问这是构造函数的什么用法

发表于 2011-03-02 最后回复 2011-03-02

对《C++编程语言》中vector的一个疑问

发表于 2010-11-04 最后回复 2010-11-04

mini2440上的USB转串口大家用过的给点建议

发表于 2009-07-24 最后回复 2009-11-17

研究生期间做嵌入式软件还是硬件更好找工作

发表于 2009-09-24 最后回复 2009-09-28

微机原理与接口技术面试时有可能问到的问题

发表于 2009-09-22 最后回复 2009-09-22

想学linux的命令,但不想装那么大的一个os

发表于 2008-09-14 最后回复 2008-11-29

初学老罗Win32,请问如何查询API的详细使用方法

发表于 2008-08-30 最后回复 2008-09-09

关于C中fprintf()的一点疑问

发表于 2008-06-07 最后回复 2008-06-10

如何调试从实模式跳入保护模式的.COM文件

发表于 2008-04-19 最后回复 2008-05-01

求大家推荐一个32位下的"debug"

发表于 2008-03-23 最后回复 2008-05-01

学习操作系统

发表于 2008-01-03 最后回复 2008-01-06

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除