函数逼近——拉格朗日插值下的(Runge)龙格现象 | 北太天元

Runge现象

随着插值节点个数增加,反而不能更好地逼近被插值函数的现象。

以函数 y = 1 x 2 + 1 y=\dfrac{1}{x^2+1} y=x2+11 为例,

  • for n = 2 : 1 : 20 n= 2:1:20 n=2:1:20
    取节点 x0 = linspace(-5,5,n+1);
    使用Lagrange插值法进行函数逼近
%% Lagrange
    clc;clear all;format long;
    x = linspace(-5,5,100);
        % 使用函数句柄的方式表示函数
    Runge = @(x)1./(x.^2+1);
    y = Runge(x);
    
    % 计算误差前的准备
    x2 = linspace(-5,5,1001);
    y2 = Runge(x2);
    delta = zeros(1,19);
    % 绘制 f(x)图像和 插值函数图像
    	figure(1);
    for n = 2:1:20
        % 随着 n 的 变化,样本点也在发生变化
    	x1 = linspace(-5,5,n+1);
    	y1 = Runge(x1);
    	Ln = Lag_interp(x1,y1,x);
    	subplot(4,5,n-1)
    	plot(x,Ln,'b');
    	hold on
    	   plot(x,y,'r');
    	hold off
    
    	% 计算误差
         delta(n-1) = max(abs(y2 - Lag_interp(x1,y1,x2)));
    end
    
    % 观察误差
    n = 2:1:20;
    subplot(4,5,20)
    plot(n,delta,'g');

得到如下图像,蓝色表示 L n ( x ) L_n(x) Ln(x),红色表示原函数.
随着插值节点个数的变化而变化.
在这里插入图片描述

误差变化图如下

随着插值节点个数的增加,误差没有下降,却嘎嘎增长!
在这里插入图片描述

可以看到一味地追求高次插值是行不通的,收敛性和稳定性都不一定能保证。:)

用分段插值的方法,可以很好的规避这种情况。

  • 10
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清水折木

谢谢前辈的鼓励,我会继续加油的

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值