解线性方程组——直接解法:LU分解、PLU分解(类似列主元消去法) | 北太天元

L: lower triangular 下三角
U: upper triangular 上三角
LU 分解,顾名思义,为 把一个 矩阵 分成 一个下三角矩阵 乘上一个上三角矩阵的形式。

Example

在这里插入图片描述

为什么可以这样

几个基本的初等行变换,可以自己验算一下,等式的左边与右边是相等的
在这里插入图片描述
用上面这几个等式,重新看一下 第一个例子,
在这里插入图片描述
对A进行了三次行变换,得到上三角矩阵U,
两边同时左乘初等矩阵的逆,表示成 A = 啥啥啥 乘 U
再用 Fact4 和 Fact 3 得到 下三角矩阵 L

LU分解

在这里插入图片描述
有了这个形式后,利用矩阵相乘,元素对应相等,便可求出 L 和 U

得到 L 和 U 后,

在这里插入图片描述
这样便可得到 x

所以关键是怎么得到 L 和 U

计算顺序

在这里插入图片描述
如果自己来算
就会发现是先算出第一层,才能算出第二层,再算出第三层,等等
因为要用计算机实现,所以需要知道,具体是怎么算的
在这里插入图片描述
在这里插入图片描述
在算的过程中可以发现,只在一个矩阵 A 上便可以发生这些变化
也就不需要开 A L U 三个矩阵的存储空间

LU分解算法

先单独求出 L 和 U
在这里插入图片描述
这样对于 系数矩阵A 相同, 右端常数项 b 不相同的情况下,都可以使用同样的 L,U 进行计算.
所以我把这里写出单独的一步,不然也体现不出 LU 分解 的优势所在.
在这里插入图片描述

北太天元源代码

LU分解

function  [L,U] = LU_factorization(A)
% LU分解
% A : 系数矩阵
% A = LU
%   Version:            1.0
%   last modified:      09/25/2023
n = length(A);
A([2:n],1) = A([2:n],1) * (1/A(1,1)); 
for r = 2:1:n
    for k = r:1:n
        A(r,k) = A(r,k) - A(r,[1:r-1])*A([1:r-1],k);
    end
    for m = r+1:1:n
        A(m,r) = (A(m,r) - A(m,[1:r-1])*A([1:r-1],r))*(1/A(r,r));
    end
end
L = tril(A,-1)+eye(n);
U = triu(A,0);
end

保存为LU_factorization.m文件

两次回代

function [X] = back_substitution_two(L,U,b)
% Ly=b, Ux=y
% b : 列向量
% X : 解向量
%
%   Version:            1.0
%   last modified:      09/25/2023
    y = push_ltm(L,b);
    X = reg_utm(U,y);
end

保存为back_substitution_two.m文件

简单使用一下

clc,clear all;
A = [1 2 -1;2 1 -2; -3 1 1];
b1 = [3 3 -6];

[L,U] = LU_factorization(A);
X1 = back_substitution_two(L,U,b1)

L = 
   1.000000000000000   0.000000000000000   0.000000000000000
   2.000000000000000   1.000000000000000   0.000000000000000
  -3.000000000000000  -2.333333333333333   1.000000000000000


U = 
   1   2  -1
   0  -3   0
   0   0  -2


X1 = 
   3.000000000000000
   1.000000000000000
   2.000000000000000

对于b不同的情况,可以这样

clc,clear all;
A = [1 2 -1;2 1 -2; -3 1 1];
b1 = [3 3 -6];
[L,U] = LU_factorization(A)
b = [3 3 -6;1 2 5;4 9 8;10 2 5];
m = length(b); X = cell(1,m);
for i = 1:1:length(b)
    X{i} = back_substitution_two(L,U,b(i,:)')
end

有3个不同的 b 得 3个不同的 解向量,这里是元胞数组的表示

X = 
    {3x1 double}    {3x1 double}    {3x1 double}    {3x1 double}

正常情况下,使用 Gauss消去法的话, Ax=b下,
相同的A 不同的 b,我们对于每一个b 都需要进行一套完整的消元过程,最后再进行一次回代.
计算量相当于: k 次完整消元+ k次回代

如果使用 LU分解, 则只需要进行一次完整的消元过程,加 2k 次回代
计算量相当于: 一次完整消元 + 2k 次 回代

显然 LU分解使用起来会更方便一些.

当然,上面的LU分解还没有达到列主元消去法那样的精度,只是相当于基础版的Gauss消去法
下面来简单介绍一下 PLU 分解,相当于 列主元消去法

PLU分解

主要是 通过 P 来达到一个 列主元消去法的效果,
在计算每一层之前,先把列中最大的那个元素换到相对的第一行, 主要就这一个特点
在这里插入图片描述
在这里插入图片描述

北太天元源代码

PLU分解

function  [L,U,P] = PLU_factorization(A)
% PA = LU分解
% Input: A
% output: L,U,P
%   Version:            1.0
%   last modified:      09/27/2023
    n = length(A);
    % 第一次行交换
    [~,s]= max(A(1:n,1)); % s 表示第一列最大元素的位置
    P = eye(n);
    P([1,s],:) = P([s,1],:); 
        A = P*A; % 用初等矩阵左乘A 对 A 作行交换
    A([2:n],1) = A([2:n],1) * (1/A(1,1)); % 求第一层
    for r = 2:1:n
        % 先有 行交换
        p=eye(n);  % 用 p 记录每一次的初等矩阵
        [~,s]= max(A(r:n,r));
         s =  s + r-1;
        p([r,s],:) = p([s,r],:);  
        A = p*A; % A的改变
        P=p*P; % 记录P的变化
            % 求第 r 层
        for k = r:1:n
            A(r,k) = A(r,k) - A(r,[1:r-1])*A([1:r-1],k);
        end
        for m = r+1:1:n
            A(m,r) = (A(m,r) - A(m,[1:r-1])*A([1:r-1],r))*(1/A(r,r));
        end
    end
    L = tril(A,-1)+eye(n);
    U = triu(A,0);
end

例子

% PA = LU test
clc;clear all;
A = [1 2 -1;2 1 -2; -3 1 1];
b1 = [3 3 -6]';
[L,U,P] = PLU_factorization(A)
X1 = back_substitution_two(L,U,P*b1)

运行后得

L = 

   1.000000000000000   0.000000000000000   0.000000000000000
   0.500000000000000   1.000000000000000   0.000000000000000
  -1.500000000000000   1.666666666666667   1.000000000000000


U = 

   2.000000000000000   1.000000000000000  -2.000000000000000
   0.000000000000000   1.500000000000000   0.000000000000000
   0.000000000000000   0.000000000000000  -2.000000000000000


P = 

   0   1   0
   1   0   0
   0   0   1


X1 = 

   3
   1
   2

文中两次回代所用到的: 解上三角、下三角

  • 21
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清水折木

谢谢前辈的鼓励,我会继续加油的

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值