AI基础数学之——掌握中学基础数学:二、几何-全等三角形的性质与判定-2
✨前言✨
本系列文章目的在于将 中学数学 以计算机语言的方式来完整的讲解表述出来,使得在这个学习过程中可以让在中学就开始接触计算机编程的学生们可以快速的将计算机与所学的内容联合在一起,实践出真知,天赋不是先天自来,而是后天无数次的练习,无数次的使用,每天都在用,没时都在用,每刻都在用才会让这个技能真正的变成自己的能力,这就是本系列文章的目的。
前置 C++ 与 Python 的环境与基础内容
标题 | 连接 |
---|---|
C++ 环境理解与配置 (MinGW) | https://blog.csdn.net/Math_teacher_fan/article/details/145429540 |
C++ 的 Visual Studio Code 运行环境配置 | https://blog.csdn.net/Math_teacher_fan/article/details/145429599 |
入门 C++ 语言:C++ 课程目录 | https://blog.csdn.net/Math_teacher_fan/article/details/145429870 |
Python 环境配置与 Jupyter Notebook 开发工具下载使用 | https://blog.csdn.net/Math_teacher_fan/article/details/145452751 |
入门 Python 语言:Python 基础课程目录 | https://blog.csdn.net/Math_teacher_fan/article/details/145453148 |
中学数学——学习脑图
标题:AI基础数学之——掌握中学基础数学:一、几何-全等三角形的性质与判定
本篇目标:
- 掌握全等三角形的基本定义及其性质。
- 学习并应用SSS、SAS、ASA、AAS四种判定方法。
- 培养解决实际几何问题的能力。
学习正文
题目示例:
题目一:
△ABC和△DEF中,AB = DE, BC = EF, AC = DF。判断两三角形是否全等,并说明理由。
解题思路:
- 比较两个三角形的对应边。
- 判断是否满足SSS(边边边)判定法则。
解题技巧:
当所有三组对应边相等时,可以直接使用SSS判定法则来证明两三角形全等。
练习题
单选题:
-
下列哪一组条件可以判定两个三角形全等?
a) 两角及一边相等
b) 两边及夹角相等
c) 三个对应角相等
d) 三边不对应相等
正确答案: b -
△XYZ中,XY = YZ, ∠X ≈ ∠Z。判断△XYZ是否为等腰三角形。
正确答案: 是的,因为两边及夹角相等,满足SAS判定法则。 -
已知AB ≅ DE, BC ≅ EF, 那么△ABC和△DEF是否全等?
正确答案: 是的,满足SSS判定法则。 -
下列哪项是SSA判定法则?
a) 两边及对角
b) 两角及一边
正确答案: a -
△PQR中,PR ≅ PQ且∠R ≅ ∠Q。判断△PQR是否为等腰三角形。
正确答案: 是的,满足SSS判定法则。
多选题:
-
判定全等的条件有哪些?
a) SSS
b) SAS
c) SSA
d) AAA
正确答案: a, b -
在什么情况下可以使用ASA判定法则?
a) 两边及夹角
b) 两角及一边
c) 三边
正确答案: b -
下列哪组条件可以用于证明两个三角形全等?
a) 三边对应相等
b) 两角及对边对应相等
c) 两边及一个不对应的角
正确答案: a, b
判断题:
-
所有等腰三角形都满足SSS或SAS判定法则。
正确答案: √ -
只有当两个三角形的所有对应角相等时,它们才全等。
正确答案: ×(注:只有在SSA和AAA外的其他情况下,三个角相等并不一定意味着全等;除非存在边长比例相同的情况。)
解答题:
-
已知AB = CD, BC = DA,证明△ABC ≡ △CDA。
解答过程:
由于AB ≅ CD, BC ≅ DA,且AC为公共边,满足SSS判定法则,因此△ABC ≡ △CDA。 -
在△ABC中,∠A = ∠D, AB = DE, AC = DF。证明△ABC ≡ △DEF。
解答过程:
根据SAS判定法则,已知AB ≅ DE, AC ≅ DF,且夹角∠A ≅ ∠D,因此△ABC ≡ △DEF。 -
判断点是否共线并计算几何形状。
(此处需具体题目条件,无法提供解答) -
通过输入边长计算两个三角形是否全等。
代码示例:def are_triangles_congruent(a, b, c): return (a == d and b == e and c == f)
-
计算不规则多边形的面积。
(此处需具体题目条件,无法提供解答)
答案解析
单选题:
- 正确答案: b
- 正确答案: 是的,因为两边及夹角相等,满足SAS判定法则。
- 正确答案: 是的,满足SSS判定法则。
- 正确答案: a
- 正确答案: 是的,满足SSS判定法则。
多选题:
- 正确答案: a, b
- 正确答案: b
- 正确答案: a, b
判断题:
- √
- ×(注:只有在SSA和AAA外的其他情况下,三个角相等并不一定意味着全等;除非存在边长比例相同的情况。)
解答题:
-
由于AB ≅ CD, BC ≅ DA,且AC为公共边,满足SSS判定法则,因此△ABC ≡ △CDA。
-
在△ABC中,∠A = ∠D, AB = DE, AC = DF。根据SAS判定法则,已知AB ≅ DE, AC ≅ DF,且夹角∠A ≅ ∠D,因此△ABC ≡ △DEF。
总结:
通过本节的学习,我们掌握了全等三角形的基本性质和判定方法,并能够应用这些知识解决实际几何问题。掌握SSS、SAS、ASA和AAS判定法则对于后续几何学习非常重要。