NumPy库实践4_排序搜索计数及集合操作

新星杯·14天创作挑战营·第18期 10w+人浏览 130人参与

排序、搜索和计数

排序

numpy.sort(a[, axis=-1, kind=‘quicksort’, order=None])
axis:排序沿数组的(轴)方向,0表示按列,1表示按行,None表示展开来排序,默认为-1,表示沿最后的轴排序。
kind:排序的算法,提供了快排’quicksort’、混排’mergesort’、堆排’heapsort’, 默认为‘quicksort’。
order:排序的字段名,可指定字段排序,默认为None。

import numpy as np

np.random.seed(20200612)
x = np.random.rand(5, 5) * 10
x = np.around(x, 2)
print(x)
# [[2.32 7.54 9.78 1.73 6.22]
#  [6.93 5.17 9.28 9.76 8.25]
#  [0.01 4.23 0.19 1.73 9.27]
#  [7.99 4.97 0.88 7.32 4.29]
#  [9.05 0.07 8.95 7.9  6.99]]

y = np.sort(x)
print(y)
# [[1.73 2.32 6.22 7.54 9.78]
#  [5.17 6.93 8.25 9.28 9.76]
#  [0.01 0.19 1.73 4.23 9.27]
#  [0.88 4.29 4.97 7.32 7.99]
#  [0.07 6.99 7.9  8.95 9.05]]

y = np.sort(x, axis=0)
print(y)
# [[0.01 0.07 0.19 1.73 4.29]
#  [2.32 4.23 0.88 1.73 6.22]
#  [6.93 4.97 8.95 7.32 6.99]
#  [7.99 5.17 9.28 7.9  8.25]
#  [9.05 7.54 9.78 9.76 9.27]]

y = np.sort(x, axis=1)
print(y)
# [[1.73 2.32 6.22 7.54 9.78]
#  [5.17 6.93 8.25 9.28 9.76]
#  [0.01 0.19 1.73 4.23 9.27]
#  [0.88 4.29 4.97 7.32 7.99]
#  [0.07 6.99 7.9  8.95 9.05]]

dt = np.dtype([('name', 'S10'), ('age', np.int)])
a = np.array([("Mike", 21), ("Nancy", 25), ("Bob", 17), ("Jane", 27)], dtype=dt)
b = np.sort(a, order='name')
print(b)
# [(b'Bob', 17) (b'Jane', 27) (b'Mike', 21) (b'Nancy', 25)]

b = np.sort(a, order='age')
print(b)
# [(b'Bob', 17) (b'Mike', 21) (b'Nancy', 25) (b'Jane', 27)]

numpy.argsort(a[, axis=-1, kind=‘quicksort’, order=None])
对数组沿给定轴执行间接排序,并使用指定排序类型返回数据的索引数组。这个索引数组用于构造排序后的数组。

import numpy as np

np.random.seed(20200612)
x = np.random.randint(0, 10, 10)
print(x)
# [6 1 8 5 5 4 1 2 9 1]

y = np.argsort(x)
print(y)
# [1 6 9 7 5 3 4 0 2 8]

print(x[y])
# [1 1 1 2 4 5 5 6 8 9]

y = np.argsort(-x)
print(y)
# [8 2 0 3 4 5 7 1 6 9]

print(x[y])
# [9 8 6 5 5 4 2 1 1 1]

np.random.seed(20200612)
x = np.random.rand(5, 5) * 10
x = np.around(x, 2)
print(x)
# [[2.32 7.54 9.78 1.73 6.22]
#  [6.93 5.17 9.28 9.76 8.25]
#  [0.01 4.23 0.19 1.73 9.27]
#  [7.99 4.97 0.88 7.32 4.29]
#  [9.05 0.07 8.95 7.9  6.99]]

y = np.argsort(x)
print(y)
# [[3 0 4 1 2]
#  [1 0 4 2 3]
#  [0 2 3 1 4]
#  [2 4 1 3 0]
#  [1 4 3 2 0]]

y = np.argsort(x, axis=0)
print(y)
# [[2 4 2 0 3]
#  [0 2 3 2 0]
#  [1 3 4 3 4]
#  [3 1 1 4 1]
#  [4 0 0 1 2]]

y = np.argsort(x, axis=1)
print(y)
# [[3 0 4 1 2]
#  [1 0 4 2 3]
#  [0 2 3 1 4]
#  [2 4 1 3 0]
#  [1 4 3 2 0]]

y = np.array([np.take(x[i], np.argsort(x[i])) for i in range(5)])  
#numpy.take(a, indices, axis=None, out=None, mode='raise')沿轴从数组中获取元素。
print(y)
# [[1.73 2.32 6.22 7.54 9.78]
#  [5.17 6.93 8.25 9.28 9.76]
#  [0.01 0.19 1.73 4.23 9.27]
#  [0.88 4.29 4.97 7.32 7.99]
#  [0.07 6.99 7.9  8.95 9.05]]

numpy.lexsort(keys[, axis=-1]) 使用键序列执行间接稳定排序。
给定多个可以在电子表格中解释为列的排序键,lexsort返回一个整数索引数组,该数组描述了按多个列排序的顺序。序列中的最后一个键用于主排序顺序,倒数第二个键用于辅助排序顺序,依此类推。keys参数必须是可以转换为相同形状的数组的对象序列。如果为keys参数提供了2D数组,则将其行解释为排序键,并根据最后一行,倒数第二行等进行排序。

#【例】按照第一列的升序或者降序对整体数据进行排序。
import numpy as np

np.random.seed(20200612)
x = np.random.rand(5, 5) * 10
x = np.around(x, 2)
print(x)
# [[2.32 7.54 9.78 1.73 6.22]
#  [6.93 5.17 9.28 9.76 8.25]
#  [0.01 4.23 0.19 1.73 9.27]
#  [7.99 4.97 0.88 7.32 4.29]
#  [9.05 0.07 8.95 7.9  6.99]]

index = np.lexsort([x[:, 0]])
print(index)
# [2 0 1 3 4]

y = x[index]
print(y)
# [[0.01 4.23 0.19 1.73 9.27]
#  [2.32 7.54 9.78 1.73 6.22]
#  [6.93 5.17 9.28 9.76 8.25]
#  [7.99 4.97 0.88 7.32 4.29]
#  [9.05 0.07 8.95 7.9  6.99]]

index = np.lexsort([-1 * x[:, 0]])
print(index)
# [4 3 1 0 2]

y = x[index]
print(y)
# [[9.05 0.07 8.95 7.9  6.99]
#  [7.99 4.97 0.88 7.32 4.29]
#  [6.93 5.17 9.28 9.76 8.25]
#  [2.32 7.54 9.78 1.73 6.22]
#  [0.01 4.23 0.19 1.73 9.27]]
import numpy as np

x = np.array([1, 5, 1, 4, 3, 4, 4])
y = np.array([9, 4, 0, 4, 0, 2, 1])
a = np.lexsort([x])
b = np.lexsort([y])
print(a)
# [0 2 4 3 5 6 1]
print(x[a])
# [1 1 3 4 4 4 5]

print(b)
# [2 4 6 5 1 3 0]
print(y[b])
# [0 0 1 2 4 4 9]

z = np.lexsort([y, x])
print(z)
# [2 0 4 6 5 3 1]
print(x[z])
# [1 1 3 4 4 4 5]

z = np.lexsort([x, y])
print(z)
# [2 4 6 5 3 1 0]
print(y[z])
# [0 0 1 2 4 4 9]

numpy.partition(a, kth, axis=-1, kind=‘introselect’, order=None)
可以看做是先对数组排序(升序),然后以索引是i的元素为基准,将元素分成两部分,即大于该元素的放在其后面,小于该元素的放在其前面,这里有点类似于快排

#【例】以索引是 kth 的元素为基准,将元素分成两部分,即大于该元素的放在其后面,小于该元素的放在其前面,这里有点类似于快排。
import numpy as np

np.random.seed(100)
x = np.random.randint(1, 30, [8, 3])
print(x)
# [[ 9 25  4]
#  [ 8 24 16]
#  [17 11 21]
#  [ 3 22  3]
#  [ 3 15  3]
#  [18 17 25]
#  [16  5 12]
#  [29 27 17]]

y = np.sort(x, axis=0)  #按列排序
print(y)
# [[ 3  5  3]
#  [ 3 11  3]
#  [ 8 15  4]
#  [ 9 17 12]
#  [16 22 16]
#  [17 24 17]
#  [18 25 21]
#  [29 27 25]]

z = np.partition(x, kth=2, axis=0)  #按列排序,并按每列位置是2的,将每列分为两部分
print(z)
# [[ 3  5  3]
#  [ 3 11  3]
#  [ 8 15  4]
#  [ 9 22 21]
#  [17 24 16]
#  [18 17 25]
#  [16 25 12]
#  [29 27 17]]

【例】选取每一列第三小的数

import numpy as np

np.random.seed(100)
x = np.random.randint(1, 30, [8, 3])
print(x)
# [[ 9 25  4]
#  [ 8 24 16]
#  [17 11 21]
#  [ 3 22  3]
#  [ 3 15  3]
#  [18 17 25]
#  [16  5 12]
#  [29 27 17]]
z = np.partition(x, kth=2, axis=0)
print(z[2])
# [ 8 15  4]

【例】选取每一列第三大的数据

import numpy as np

np.random.seed(100)
x = np.random.randint(1, 30, [8, 3])
print(x)
# [[ 9 25  4]
#  [ 8 24 16]
#  [17 11 21]
#  [ 3 22  3]
#  [ 3 15  3]
#  [18 17 25]
#  [16  5 12]
#  [29 27 17]]
z = np.partition(x, kth=-3, axis=0)
print(z[-3])
# [17 24 17]

numpy.argpartition(a, kth, axis=-1, kind=‘introselect’, order=None)
沿着给定的维度(axis参数所决定)使用特定的算法(kind参数所决定)对输入a执行分区。函数的返回值是一个与输入a有着相同shape的索引,这个索引是根据分区的顺序和给定的维度进行分区得到的。

import numpy as np

np.random.seed(100)
x = np.random.randint(1, 30, [8, 3])
print(x)
# [[ 9 25  4]
#  [ 8 24 16]
#  [17 11 21]
#  [ 3 22  3]
#  [ 3 15  3]
#  [18 17 25]
#  [16  5 12]
#  [29 27 17]]

y = np.argsort(x, axis=0)
print(y)
# [[3 6 3]
#  [4 2 4]
#  [1 4 0]
#  [0 5 6]
#  [6 3 1]
#  [2 1 7]
#  [5 0 2]
#  [7 7 5]]

z = np.argpartition(x, kth=2, axis=0)
print(z)
# [[3 6 3]
#  [4 2 4]
#  [1 4 0]
#  [0 3 2]
#  [2 1 1]
#  [5 5 5]
#  [6 0 6]
#  [7 7 7]]

【例】选取每一列第三小的数的索引

import numpy as np

np.random.seed(100)
x = np.random.randint(1, 30, [8, 3])
print(x)
# [[ 9 25  4]
#  [ 8 24 16]
#  [17 11 21]
#  [ 3 22  3]
#  [ 3 15  3]
#  [18 17 25]
#  [16  5 12]
#  [29 27 17]]

z = np.argpartition(x, kth=2, axis=0)
print(z[2])
# [1 4 0]

【例】选取每一列第三大的数的索引

import numpy as np

np.random.seed(100)
x = np.random.randint(1, 30, [8, 3])
print(x)
# [[ 9 25  4]
#  [ 8 24 16]
#  [17 11 21]
#  [ 3 22  3]
#  [ 3 15  3]
#  [18 17 25]
#  [16  5 12]
#  [29 27 17]]

z = np.argpartition(x, kth=-3, axis=0)
print(z[-3])
# [2 1 7]
搜索

numpy.argmax(a[, axis=None, out=None])
返回数组沿着某一条轴最大值的索引

import numpy as np

np.random.seed(20200612)
x = np.random.rand(5, 5) * 10
x = np.around(x, 2)
print(x)
# [[2.32 7.54 9.78 1.73 6.22]
#  [6.93 5.17 9.28 9.76 8.25]
#  [0.01 4.23 0.19 1.73 9.27]
#  [7.99 4.97 0.88 7.32 4.29]
#  [9.05 0.07 8.95 7.9  6.99]]

y = np.argmax(x)
print(y)  # 2

y = np.argmax(x, axis=0)
print(y)
# [4 0 0 1 2]

y = np.argmax(x, axis=1)
print(y)
# [2 3 4 0 0]

numpy.argmin(a[, axis=None, out=None])
返回数组沿着某一条轴最小值的索引

import numpy as np

np.random.seed(20200612)
x = np.random.rand(5, 5) * 10
x = np.around(x, 2)
print(x)
# [[2.32 7.54 9.78 1.73 6.22]
#  [6.93 5.17 9.28 9.76 8.25]
#  [0.01 4.23 0.19 1.73 9.27]
#  [7.99 4.97 0.88 7.32 4.29]
#  [9.05 0.07 8.95 7.9  6.99]]

y = np.argmin(x)
print(y)  # 10

y = np.argmin(x, axis=0)
print(y)
# [2 4 2 0 3]

y = np.argmin(x, axis=1)
print(y)
# [3 1 0 2 1]

numppy.nonzero(a) 其值为非零元素的下标在对应轴上的值

  1. 只有a中非零元素才会有索引值,那些零值元素没有索引值。
  2. 返回一个长度为a.ndim的元组(tuple),元组的每个元素都是一个整数数组(array)。
  3. 每一个array均是从一个维度上来描述其索引值。比如,如果a是一个二维数组,则tuple包含两个array,第一个array从行维度来描述索引值;第二个array从列维度来描述索引值。
  4. 该 np.transpose(np.nonzero(x)) 函数能够描述出每一个非零元素在不同维度的索引值。
  5. 通过a[nonzero(a)]得到所有a中的非零值。

【例】一维数组

import numpy as np

x = np.array([0, 2, 3])
print(x)  # [0 2 3]
print(x.shape)  # (3,)
print(x.ndim)  # 1

y = np.nonzero(x)
print(y)  # (array([1, 2], dtype=int64),)
print(np.array(y))  # [[1 2]]
print(np.array(y).shape)  # (1, 2)
print(np.array(y).ndim)  # 2
print(np.transpose(y))
# [[1]
#  [2]]
print(x[np.nonzero(x)])
#[2, 3]

【例】二维数组

import numpy as np

x = np.array([[3, 0, 0], [0, 4, 0], [5, 6, 0]])
print(x)
# [[3 0 0]
#  [0 4 0]
#  [5 6 0]]
print(x.shape)  # (3, 3)
print(x.ndim)  # 2

y = np.nonzero(x)
print(y)
# (array([0, 1, 2, 2], dtype=int64), array([0, 1, 0, 1], dtype=int64))
print(np.array(y))
# [[0 1 2 2]
#  [0 1 0 1]]
print(np.array(y).shape)  # (2, 4)
print(np.array(y).ndim)  # 2

y = x[np.nonzero(x)]
print(y)  # [3 4 5 6]

y = np.transpose(np.nonzero(x))
print(y)
# [[0 0]
#  [1 1]
#  [2 0]
#  [2 1]]

【例】三维数组

import numpy as np

x = np.array([[[0, 1], [1, 0]], [[0, 1], [1, 0]], [[0, 0], [1, 0]]])
print(x)
# [[[0 1]
#   [1 0]]
#
#  [[0 1]
#   [1 0]]
#
#  [[0 0]
#   [1 0]]]
print(np.shape(x))  # (3, 2, 2)
print(x.ndim)  # 3

y = np.nonzero(x)
print(np.array(y))
# [[0 0 1 1 2]
#  [0 1 0 1 1]
#  [1 0 1 0 0]]
print(np.array(y).shape)  # (3, 5)
print(np.array(y).ndim)  # 2
print(y)
# (array([0, 0, 1, 1, 2], dtype=int64), array([0, 1, 0, 1, 1], dtype=int64), array([1, 0, 1, 0, 0], dtype=int64))
print(x[np.nonzero(x)])
#[1 1 1 1 1]

【例】nonzero()将布尔数组转换成整数数组进行操作。

import numpy as np

x = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print(x)
# [[1 2 3]
#  [4 5 6]
#  [7 8 9]]

y = x > 3
print(y)
# [[False False False]
#  [ True  True  True]
#  [ True  True  True]]

y = np.nonzero(x > 3)
print(y)
# (array([1, 1, 1, 2, 2, 2], dtype=int64), array([0, 1, 2, 0, 1, 2], dtype=int64))

y = x[np.nonzero(x > 3)]
print(y)
# [4 5 6 7 8 9]

y = x[x > 3]
print(y)
# [4 5 6 7 8 9]

numpy.where(condition, [x=None, y=None])
参数表示条件,当条件成立时,where 返回的是每个符合 condition 条件元素的坐标,返回的是以元组的形式

【例】满足条件condition,输出x,不满足输出y

import numpy as np

x = np.arange(10)
print(x)
# [0 1 2 3 4 5 6 7 8 9]

y = np.where(x < 5, x, 10 * x)
print(y)
# [ 0  1  2  3  4 50 60 70 80 90]

x = np.array([[0, 1, 2],
              [0, 2, 4],
              [0, 3, 6]])
y = np.where(x < 4, x, -1)
print(y)
# [[ 0  1  2]
#  [ 0  2 -1]
#  [ 0  3 -1]]

【例】只有condition,没有xy,则输出满足条件 (即非0) 元素的坐标 (等价于numpy.nonzero)。这里的坐标以tuple的形式给出,通常原数组有多少维,输出的tuple中就包含几个数组,分别对应符合条件元素的各维坐标。

import numpy as np

x = np.array([1, 2, 3, 4, 5, 6, 7, 8])
y = np.where(x > 5)
print(y)
# (array([5, 6, 7], dtype=int64),)
print(x[y])
# [6 7 8]

y = np.nonzero(x > 5)
print(y)
# (array([5, 6, 7], dtype=int64),)
print(x[y])
# [6 7 8]

x = np.array([[11, 12, 13, 14, 15],
              [16, 17, 18, 19, 20],
              [21, 22, 23, 24, 25],
              [26, 27, 28, 29, 30],
              [31, 32, 33, 34, 35]])
y = np.where(x > 25)
print(y)
# (array([3, 3, 3, 3, 3, 4, 4, 4, 4, 4], dtype=int64), array([0, 1, 2, 3, 4, 0, 1, 2, 3, 4], dtype=int64))

print(x[y])
# [26 27 28 29 30 31 32 33 34 35]

y = np.nonzero(x > 25)
print(y)
# (array([3, 3, 3, 3, 3, 4, 4, 4, 4, 4], dtype=int64), array([0, 1, 2, 3, 4, 0, 1, 2, 3, 4], dtype=int64))
print(x[y])
# [26 27 28 29 30 31 32 33 34 35]

numpy.searchsorted(a, v[, side=‘left’, sorter=None])
在数组a中插入数组v(并不执行插入操作),返回一个下标列表,这个列表指明了v中对应元素应该插入在a中那个位置上
a:一维输入数组。当sorter参数为None的时候,a必须为升序数组;否则,sorter不能为空,存放a中元素的index,用于反映a数组的升序排列方式。
v:插入a数组的值,可以为单个元素,list或者ndarray。
side:查询方向,当为left时,将返回第一个符合条件的元素下标;当为right时,将返回最后一个符合条件的元素下标。
sorter:一维数组存放a数组元素的 index,index 对应元素为升序。

import numpy as np

x = np.array([0, 1, 5, 9, 11, 18, 26, 33])
y = np.searchsorted(x, 15)
print(y)  # 5

y = np.searchsorted(x, 15, side='right')
print(y)  # 5

y = np.searchsorted(x, -1)
print(y)  # 0

y = np.searchsorted(x, -1, side='right')
print(y)  # 0

y = np.searchsorted(x, 35)
print(y)  # 8

y = np.searchsorted(x, 35, side='right')
print(y)  # 8

y = np.searchsorted(x, 11)
print(y)  # 4

y = np.searchsorted(x, 11, side='right')
print(y)  # 5

y = np.searchsorted(x, 0)
print(y)  # 0

y = np.searchsorted(x, 0, side='right')
print(y)  # 1

y = np.searchsorted(x, 33)
print(y)  # 7

y = np.searchsorted(x, 33, side='right')
print(y)  # 8
import numpy as np

x = np.array([0, 1, 5, 9, 11, 18, 26, 33])
y = np.searchsorted(x, [-1, 0, 11, 15, 33, 35])
print(y)  # [0 0 4 5 7 8]

y = np.searchsorted(x, [-1, 0, 11, 15, 33, 35], side='right')
print(y)  # [0 1 5 5 8 8]
import numpy as np

x = np.array([0, 1, 5, 9, 11, 18, 26, 33])
np.random.shuffle(x)
print(x)  # [33  1  9 18 11 26  0  5]

x_sort = np.argsort(x)
print(x_sort)  # [6 1 7 2 4 3 5 0]

y = np.searchsorted(x, [-1, 0, 11, 15, 33, 35], sorter=x_sort)
print(y)  # [0 0 4 5 7 8]

y = np.searchsorted(x, [-1, 0, 11, 15, 33, 35], side='right', sorter=x_sort)
print(y)  # [0 1 5 5 8 8]
计数

numpy.count_nonzero(a, axis=None) 返回数组中的非0元素个数。

import numpy as np

x = np.count_nonzero(np.eye(4))
print(x)  # 4

x = np.count_nonzero([[0, 1, 7, 0, 0], [3, 0, 0, 2, 19]])
print(x)  # 5

x = np.count_nonzero([[0, 1, 7, 0, 0], [3, 0, 0, 2, 19]], axis=0)
print(x)  # [1 1 1 1 1]

x = np.count_nonzero([[0, 1, 7, 0, 0], [3, 0, 0, 2, 19]], axis=1)
print(x)  # [2 3]

集合操作

构造集合

numpy.unique(ar, return_index=False, return_inverse=False, return_counts=False, axis=None)

  • return_index=True 表示返回新列表元素在旧列表中的位置。
  • return_inverse=True表示返回旧列表元素在新列表中的位置。
  • return_counts=True表示返回新列表元素在旧列表中出现的次数

【例】找出数组中的唯一值并返回已排序的结果。

import numpy as np

x = np.unique([1, 1, 3, 2, 3, 3])
print(x)  # [1 2 3]

x = sorted(set([1, 1, 3, 2, 3, 3]))
print(x)  # [1, 2, 3]

x = np.array([[1, 1], [2, 3]])
u = np.unique(x)
print(u)  # [1 2 3]

x = np.array([[1, 0, 0], [1, 0, 0], [2, 3, 4]])
y = np.unique(x, axis=0)
print(y)
# [[1 0 0]
#  [2 3 4]]

x = np.array(['a', 'b', 'b', 'c', 'a'])
u, index = np.unique(x, return_index=True)
print(u)  # ['a' 'b' 'c']
print(index)  # [0 1 3]
print(x[index])  # ['a' 'b' 'c']

x = np.array([1, 2, 6, 4, 2, 3, 2])
u, index = np.unique(x, return_inverse=True)
print(u)  # [1 2 3 4 6]
print(index)  # [0 1 4 3 1 2 1]
print(u[index])  # [1 2 6 4 2 3 2]

u, count = np.unique(x, return_counts=True)
print(u)  # [1 2 3 4 6]
print(count)  # [1 3 1 1 1]
布尔运算

numpy.in1d(ar1, ar2, assume_unique=False, invert=False)
前面的数组是否包含于后面的数组,返回布尔值。返回的值是针对第一个参数的数组的,所以维数和第一个参数一致,布尔值与数组的元素位置也一一对应。

import numpy as np

test = np.array([0, 1, 2, 5, 0])
states = [0, 2]
mask = np.in1d(test, states)
print(mask)  # [ True False  True False  True]
print(test[mask])  # [0 2 0]

mask = np.in1d(test, states, invert=True)
print(mask)  # [False  True False  True False]
print(test[mask])  # [1 5]
求两个集合的交集

numpy.intersect1d(ar1, ar2, assume_unique=False, return_indices=False)
用于返回两个数组的交集,即找出两个数组中共同拥有的元素,并返回一个新的含有这些元素的一维数组。

【例】求两个数组的唯一化+求交集+排序函数。

import numpy as np
from functools import reduce

x = np.intersect1d([1, 3, 4, 3], [3, 1, 2, 1])
print(x)  # [1 3]

x = np.array([1, 1, 2, 3, 4])
y = np.array([2, 1, 4, 6])
xy, x_ind, y_ind = np.intersect1d(x, y, return_indices=True)
print(x_ind)  # [0 2 4]
print(y_ind)  # [1 0 2]
print(xy)  # [1 2 4]
print(x[x_ind])  # [1 2 4]
print(y[y_ind])  # [1 2 4]

x = reduce(np.intersect1d, ([1, 3, 4, 3], [3, 1, 2, 1], [6, 3, 4, 2]))
print(x)  # [3]
求两个集合的并集

numpy.union1d(ar1, ar2)

【例】计算两个集合的并集,唯一化并排序。

import numpy as np
from functools import reduce

x = np.union1d([-1, 0, 1], [-2, 0, 2])
print(x)  # [-2 -1  0  1  2]
x = reduce(np.union1d, ([1, 3, 4, 3], [3, 1, 2, 1], [6, 3, 4, 2]))
print(x)  # [1 2 3 4 6]
'''
functools.reduce(function, iterable[, initializer])
将两个参数的 function 从左至右积累地应用到 iterable 的条目,以便将该可迭代对象缩减为单一的值。 例如,reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) 是计算 ((((1+2)+3)+4)+5) 的值。 左边的参数 x 是积累值而右边的参数 y 则是来自 iterable 的更新值。 如果存在可选项 initializer,它会被放在参与计算的可迭代对象的条目之前,并在可迭代对象为空时作为默认值。 如果没有给出 initializer 并且 iterable 仅包含一个条目,则将返回第一项。

大致相当于:
def reduce(function, iterable, initializer=None):
    it = iter(iterable)
    if initializer is None:
        value = next(it)
    else:
        value = initializer
    for element in it:
        value = function(value, element)
    return value
'''
求两个集合的差集

numpy.setdiff1d(ar1, ar2, assume_unique=False)

【例】集合的差,即元素存在于第一个函数不存在于第二个函数中。

import numpy as np

a = np.array([1, 2, 3, 2, 4, 1])
b = np.array([3, 4, 5, 6])
x = np.setdiff1d(a, b)
print(x)  # [1 2]
求两个集合的异或

setxor1d(ar1, ar2, assume_unique=False)

【例】集合的对称差,即两个集合的交集的补集。简言之,就是两个数组中各自独自拥有的元素的集合。

import numpy as np

a = np.array([1, 2, 3, 2, 4, 1])
b = np.array([3, 4, 5, 6])
x = np.setxor1d(a, b)
print(x)  # [1 2 5 6]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

注释写满人生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值