- 博客(14)
- 收藏
- 关注
原创 个人作业-提问回顾与个人总结
同时,我们制定了一套完整的“发现缺陷-报告缺陷-修复缺陷-确认修复”的流程,以便于后续的测试工作。即使修复成本高,也是值得的,因为这样可以保护用户的数据安全,提高用户的满意度,以及维护品牌的声誉。在我们的团队需求分析过程中,我们先头脑风暴了一些典型用户的初步需求,然后我们结合用户视角和实现难度,筛选并细化了一些合适的需求,进一步将它们转化为具体的实施需求。答:一般来说,如果我们在创建典型用户时没有做足够的用户研究,或者让我们自己的主观偏见影响了对用户的理解,那么我们定义的典型用户就有可能带有主观偏见。
2023-06-23 14:17:39 101 1
原创 结对项目-最长英语单词链
两个人编程可以互相发现对方代码的 bug,填补对方的思维漏洞。两个人共同完成一项任务,可以相互监督并防止对方摸鱼。对于可以并行的任务,如算法实现与gui开发,结对可以极大提升编程效率。
2023-03-19 22:38:26 207
原创 CS231n 学习总结(笔记和作业)
历时两个月,终于学完了这门计算机视觉的神课~回顾整个学习历程,不得不说这门课真的设计的如此之好,不论是讲师Justin深入浅出的讲解,还是颇有难度的课后作业,都让我真正对深度学习这一领域有了一定的了解。我是一开始在b站上看2017年的cs231n,但是在看完CNN的部分后发现Justin在Umich新开了一门计算机视觉的课程——EECS498-007/598-005,而且课程顺序基本和cs231n一样。于是我就果断去看这门课了,里面讲解的内容比cs231n多不少,尤其是近几年各个领域的最新进展都有所提到
2021-03-16 09:45:16 1853 1
原创 大作业
import numpy as npoutfile = r'.\test.npz'x = np.linspace(0, np.pi, 5)y = np.sin(x)z = np.cos(x)np.savez(outfile, x, y, z_d=z)data = np.load(outfile)np.set_printoptions(suppress=True)print(data.files) # ['z_d', 'arr_0', 'arr_1']print(data['arr_
2020-12-01 23:50:42 101
原创 09Numpy线性代数
线性代数Numpy 定义了 matrix 类型,使用该 matrix 类型创建的是矩阵对象,它们的加减乘除运算缺省采用矩阵方式计算,因此用法和Matlab十分类似。但是由于 NumPy 中同时存在 ndarray 和 matrix 对象,因此用户很容易将两者弄混。这有违 Python 的“显式优于隐式”的原则,因此官方并不推荐在程序中使用 matrix。在这里,我们仍然用 ndarray 来介绍。矩阵和向量积矩阵的定义、矩阵的加法、矩阵的数乘、矩阵的转置与二维数组完全一致,不再进行说明,但矩阵的乘法有
2020-11-29 14:37:01 121
原创 08Numpy统计相关
统计相关次序统计计算最小值numpy.amin(a[, axis=None, out=None, keepdims=np._NoValue, initial=np._NoValue, where=np._NoValue])Return the minimum of an array or minimum along an axis.【例】计算最小值import numpy as npx = np.array([[11, 12, 13, 14, 15], [16,
2020-11-28 00:03:16 102
原创 07Numpy中的随机抽样
numpy.random模块中对python内置的random进行了补充,可以生成多种概率分布。离散型随机变量1、二项分布numpy.random.binomial(n, p, size=None)Draw samples from a binomial distribution.表示对一个二项分布进行采样,size表示采样的次数,n表示做了n重伯努利试验,p表示成功的概率,函数的返回值表示n中成功的次数(返回值形状与传入n的shape相同)【例】野外正在进行9(n=9)口石油勘探井的发掘工作
2020-11-25 19:08:42 420
原创 06Numpy输入与输出
一、numpy二进制文件numpy中二进制文件有两种形式,分别为npy、npz,其中:npy格式是以二进制的方式储存的文本文件,第一行中用文本形式保存了数据的元信息(ndim、dtype、shape等),可以用二进制工具来查看内容npz格式是以压缩包的方式打包储存npy格式的文件,可以使用压缩软件来解压操作二进制文件的函数numpy.save(file, arr, allow_pickle=True, fix_imports=True) Save an array to a binary f
2020-11-22 21:56:09 253 1
原创 05 Numpy排序搜索计数及集合操作
排序,搜索和计数排序numpy.sort()numpy.sort(a[, axis=-1, kind='quicksort', order=None]) Return a sorted copy of an array.axis:排序沿数组的(轴)方向,0表示按行,1表示按列,None表示展开来排序,默认为-1,表示沿最后的轴排序。kind:排序的算法,提供了快排’quicksort’、混排’mergesort’、堆排’heapsort’, 默认为‘quicksort’。order:排序的字
2020-10-31 17:56:49 153
原创 04 Numpy数学函数与逻辑函数
向量化与广播向量化和广播这两个概念是 numpy 内部实现的基础。有了向量化,编写代码时无需使用显式循环。这些循环实际上不能省略,只不过是在内部实现,被代码中的其他结构代替。向量化的应用使得代码更简洁,可读性更强,也可以说使用了向量化方法的代码看上去更“Pythonic”。广播(Broadcasting)机制描述了 numpy 如何在算术运算期间处理具有不同形状的数组,让较小的数组在较大的数组上“广播”,以便它们具有兼容的形状。并不是所有的维度都要彼此兼容才符合广播机制的要求,但它们必须满足一定的条件。
2020-10-28 23:31:20 188
原创 03 Numpy数组操作之变形
数组操作更改形状在对数组进行操作时,为了满足格式与计算的需要我们常常会改变数组的形状。numpy.ndarray.shape表示数组的维度,返回一个tuple,tuple的长度等于维数ndim【例】通过修改 shape 属性来改变数组的形状。import numpy as npx = np.array([1, 2, 9, 4, 5, 6, 7, 8])print(x.shape) # (8,)x.shape = [2, 4]print(x)# [[1 2 9 4]# [5 6
2020-10-25 10:46:35 208
原创 02 Numpy索引、切片与迭代
副本与视图在Numpy中进行数组运算或者数组操作时,返回结果为数组的副本或视图。在Numpy中,所有赋值运算不会为数组和数组中的任何元素创建副本。使用 numpy.ndarray.copy函数来创建一个副本。对副本中的数据进行修改不会影响到原始数据,因为它们存放的物理地址不同。数组切片操作返回的是原数组的视图,而非副本索引与切片数组索引机制指的是用方括号([])加序号的形式引用单个数组元素,它的用处很多,比如抽取元素,选取数组的几个元素,甚至为其赋一个新值。整数索引import nump
2020-10-21 17:46:46 229 1
原创 01 Numpy数据类型及数组创建
常量numpy.nannumpy.nan/NaN/NAN:表示空值两个nan是不相等的numpy.isnan(x, *args, **kwargs) Test element-wise for NaN and return result as a boolean array.numpy.infnumpy.Inf/inf/infty/PINF/Infinity:表示空值numpy.pinumpy.e数据类型常见数据类型Python 原生的数据类型相对较少, bool、int、floa
2020-10-20 23:54:58 519 2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人