✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥 内容介绍
摘要: 时间序列预测是众多领域的关键任务,准确预测未来趋势对决策制定至关重要。核极限学习机(KELM)凭借其优越的学习速度和泛化能力,成为时间序列预测的有效工具。然而,KELM的性能高度依赖于核参数和正则化参数的选择。本文提出了一种基于改进麻雀搜索算法(SSA)和标准麻雀搜索算法(SSA)优化KELM的双重方法,用于多输入单输出(MISO)时间序列预测。首先,详细介绍了KELM模型及其参数选择的重要性。其次,深入探讨了SSA算法的原理及其改进策略,以增强其全局搜索能力和收敛速度。最后,通过将SSA和改进的SSA (SSA-KELM) 分别应用于KELM参数优化,并与其他优化算法进行对比实验,验证了所提出方法在MISO时间序列预测中的有效性和优越性。实验结果表明,SSA-KELM算法能够有效地寻找到KELM的最优参数组合,从而提升预测精度和稳定性。
关键词: 时间序列预测;核极限学习机(KELM);麻雀搜索算法(SSA);参数优化;多输入单输出(MISO)
1. 引言
时间序列预测在诸多领域,例如金融市场预测、电力负荷预测、环境监测等,都扮演着至关重要的角色。准确地预测未来趋势能够为决策者提供重要的参考依据,从而有效地应对各种挑战。传统的预测方法,例如ARIMA模型和指数平滑法,在处理复杂的非线性时间序列时往往力不从心。近年来,随着机器学习技术的快速发展,一些新型的智能算法被广泛应用于时间序列预测中,其中核极限学习机(KELM)因其优异的学习速度和泛化能力而备受关注。
KELM作为极限学习机(ELM)的核化版本,继承了ELM的快速学习特性,同时具备更强的非线性拟合能力。然而,KELM的性能高度依赖于核参数和正则化参数的选择。这些参数的选取往往需要耗费大量时间和精力,且其最优值通常难以确定。因此,寻求一种高效且可靠的参数优化方法成为提高KELM预测精度的关键。
麻雀搜索算法(SSA)是一种新兴的元启发式优化算法,它模拟了麻雀群体觅食和躲避天敌的行为,具有良好的全局搜索能力和收敛速度。然而,SSA也存在一些不足,例如容易陷入局部最优解以及收敛速度后期下降等问题。针对这些问题,本文提出了一种改进的SSA算法,并将其应用于KELM参数优化。
2. 核极限学习机(KELM)
KELM是一种单隐层前馈神经网络,其学习过程只需确定隐层节点权重和偏置,而无需迭代调整。其数学模型可以表示为:
𝑓𝑖(𝑥)=∑𝑖=1𝐿𝛽𝑖𝐾(𝑥,𝑥𝑖)
3. 麻雀搜索算法(SSA)及其改进
麻雀搜索算法(SSA)是一种模拟麻雀群体觅食和反捕食行为的元启发式优化算法。其核心思想是将麻雀个体抽象为搜索空间中的点,通过迭代更新个体位置来寻找最优解。SSA算法主要包括发现者和加入者两种角色,它们分别代表了不同的搜索策略。
为了提高SSA的全局搜索能力和收敛速度,本文提出了一种改进的SSA算法(SSA-KELM)。改进策略主要包括:
-
改进发现者更新机制: 引入自适应权重因子,动态调整发现者的探索和开发能力,避免算法过早陷入局部最优。
-
增强加入者更新机制: 引入Levy飞行机制,增强加入者的全局搜索能力,提高算法跳出局部最优解的能力。
-
改进预警机制: 改进预警机制的触发条件,使其能够更有效地引导麻雀个体向更优区域移动。
4. 基于SSA和SSA-KELM优化的KELM模型
本文将标准SSA和改进的SSA-KELM分别应用于KELM参数优化。具体流程如下:
-
初始化: 随机生成麻雀种群,并初始化KELM模型参数。
-
迭代寻优: 根据SSA或SSA-KELM算法更新麻雀个体位置,即更新KELM模型参数。
-
适应度评价: 利用预测精度作为适应度函数,评价每个个体(KELM模型)的性能。
-
更新最优解: 记录当前迭代过程中最优的KELM模型参数及其对应的预测精度。
-
终止条件判断: 若达到最大迭代次数或满足其他终止条件,则算法停止,输出最优KELM模型参数。
5. 实验结果与分析
本文选取了多个MISO时间序列数据集进行实验,并与其他优化算法(例如粒子群算法(PSO)、遗传算法(GA))进行对比,评估SSA和SSA-KELM优化KELM的性能。实验结果表明,SSA-KELM算法在预测精度和稳定性方面均优于其他算法,有效地提升了KELM模型的预测能力。 具体表现为:均方根误差(RMSE)、平均绝对误差(MAE)和平均绝对百分比误差(MAPE)等指标均取得了较好的结果,证明了改进算法的有效性。
6. 结论
本文提出了一种基于SSA-KELM和KELM麻雀算法优化核极限学习机用于多输入单输出时间序列预测的方法。通过改进SSA算法,增强了其全局搜索能力和收敛速度,并将其应用于KELM参数优化,有效提高了KELM模型的预测精度和稳定性。实验结果验证了该方法的有效性和优越性,为时间序列预测提供了一种新的有效途径。未来研究可以进一步探索更先进的优化算法以及改进KELM模型结构,以进一步提升预测精度。 此外,对不同类型时间序列数据的适应性研究也是未来工作的重要方向。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制
🌿 往期回顾可以关注主页,点击搜索
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇