✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
模块化多电平变换器(Modular Multilevel Converter,MMC)作为一种新型的电力电子变换器拓扑结构,凭借其模块化设计、高电压等级、低谐波含量和良好的可扩展性等优势,在直流输电(HVDC)、可再生能源并网、电能质量控制等领域得到了广泛应用。MMC的设计和控制策略一直是研究的热点,而负载母线电压的稳定是保证系统安全稳定运行的关键。本文将针对基于电压源换流器(Voltage Source Converter,VSC)的MMC,深入探讨利用比例积分(Proportional-Integral,PI)控制器来实现负载母线电压精确稳定控制的方法。
一、MMC的基本原理与优势
MMC的核心结构由多个独立的功率转换模块(Sub-Module,SM)串联构成,每个SM通常包含一个半桥或全桥电路,以及一个或多个储能电容。通过控制SM的开关状态,可以产生多电平的电压输出,从而逼近理想的正弦波。VSC-MMC以绝缘栅双极晶体管(Insulated Gate Bipolar Transistor,IGBT)作为开关器件,具有开关频率高、损耗低、控制灵活等优点。
相比于传统的两电平或三电平变换器,MMC具有以下显著优势:
-
**模块化设计:**每个SM的结构相同,易于大规模集成,方便扩展电压等级,提高系统的可靠性和可维护性。
-
**高电压等级:**通过增加SM的数量,可以轻松实现高电压等级的输出,满足HVDC等高压应用的需求。
-
**低谐波含量:**多电平输出降低了开关频率,从而减少了输出电压和电流的谐波含量,改善电网的电能质量。
-
**良好的可扩展性:**可以根据实际应用需求灵活地调整SM的数量和类型,适应不同的系统配置。
-
**能量储存能力:**SM中的电容可以储存一定的能量,提供一定的电压支撑能力,提高系统的动态响应能力。
二、MMC控制策略概述
MMC的控制策略涉及多个层面,包括系统级控制、模块级控制和器件级控制。系统级控制主要负责实现对MMC的整体控制目标,如直流电压控制、交流电压控制、有功功率和无功功率控制等。模块级控制则负责控制每个SM的开关状态,以实现期望的输出电压。器件级控制则负责控制IGBT的开关,确保其安全可靠运行。
为了实现负载母线电压的稳定控制,需要选择合适的控制策略。常见的控制策略包括:
-
**开环控制:**基于预设的开关模式,直接控制SM的开关状态。这种控制方式简单,但抗干扰能力较差。
-
**闭环控制:**通过测量负载母线电压,并将其与期望值进行比较,根据偏差信号调节SM的开关状态。这种控制方式具有较好的抗干扰能力和稳定性。
-
**矢量控制:**通过将三相电压和电流转换到旋转坐标系,实现对有功功率和无功功率的独立控制。这种控制方式可以实现更精确的功率控制。
-
**模型预测控制(Model Predictive Control,MPC):**基于MMC的数学模型,预测未来的电压和电流状态,并选择最优的开关状态。这种控制方式具有良好的动态性能和控制精度,但计算复杂度较高。
三、基于PI控制器的负载母线电压稳定控制
在上述控制策略中,PI控制器因其结构简单、易于实现和调试,在工业控制领域得到了广泛应用。对于负载母线电压的稳定控制,可以采用以下基于PI控制器的方案:
-
**电压外环控制:**测量负载母线电压V<sub>abc</sub>,通过坐标变换将其转换为同步旋转坐标系下的直轴分量V<sub>d</sub>和交轴分量V<sub>q</sub>。将V<sub>d</sub>与期望值V<sub>dref</sub>进行比较,得到电压偏差信号ΔV<sub>d</sub>。将ΔV<sub>d</sub>输入到PI控制器,PI控制器的输出作为电流内环的参考电流I<sub>dref</sub>。
-
**电流内环控制:**测量MMC输出电流I<sub>abc</sub>,同样将其转换为同步旋转坐标系下的直轴分量I<sub>d</sub>和交轴分量I<sub>q</sub>。将I<sub>d</sub>与参考电流I<sub>dref</sub>进行比较,得到电流偏差信号ΔI<sub>d</sub>。将ΔI<sub>d</sub>输入到另一个PI控制器,PI控制器的输出作为MMC的调制信号V<sub>dmod</sub>。类似地,可以得到V<sub>qmod</sub>。
-
**调制与开关驱动:**将调制信号V<sub>dmod</sub>和V<sub>qmod</sub>转换为三相调制信号V<sub>amod</sub>、V<sub>bmod</sub>和V<sub>cmod</sub>。然后,通过脉宽调制(Pulse Width Modulation,PWM)技术,生成相应的开关驱动信号,控制SM中的IGBT开关,从而实现期望的电压输出。
PI控制器的设计与参数整定:
PI控制器的传递函数可以表示为:
G(s) = K<sub>p</sub> + K<sub>i</sub>/s
其中,K<sub>p</sub>为比例增益,K<sub>i</sub>为积分增益。PI控制器的参数整定对系统的控制性能至关重要。常用的参数整定方法包括:
-
**试错法:**通过不断调整K<sub>p</sub>和K<sub>i</sub>的值,观察系统的响应,找到最佳的参数组合。
-
**经验公式法:**根据经验公式,如Ziegler-Nichols法,计算K<sub>p</sub>和K<sub>i</sub>的初始值,然后进行微调。
-
**优化算法:**利用优化算法,如遗传算法、粒子群算法等,自动搜索最佳的参数组合,提高参数整定的效率和精度。
-
**频域分析法:**通过分析系统的开环传递函数,设计满足特定性能指标的PI控制器。
四、MMC关键技术挑战及研究方向
虽然MMC具有诸多优势,但在实际应用中仍面临着一些关键技术挑战:
-
**电容电压平衡控制:**由于SM中电容的参数差异、负载波动等因素的影响,会导致电容电压不平衡。需要采用合适的控制策略,实现电容电压的平衡控制,保证MMC的正常运行。
-
**环流抑制:**上下桥臂之间存在环流,会增加系统的损耗。需要采用有效的控制策略,抑制环流,提高系统的效率。
-
**故障诊断与保护:**MMC结构复杂,故障模式多样。需要开发高效的故障诊断和保护方法,提高系统的可靠性。
-
**新型拓扑结构研究:**研究新型的SM拓扑结构,如混合SM、混合级联SM等,提高系统的性能和灵活性。
-
**智能化控制策略研究:**应用人工智能技术,如机器学习、深度学习等,开发智能化的控制策略,提高系统的自适应性和优化能力。
五、结论
基于VSC的MMC以其独特的优势,在现代电力系统中发挥着越来越重要的作用。本文深入探讨了利用PI控制器实现MMC负载母线电压稳定控制的方法。通过合理设计电压外环和电流内环,并优化PI控制器的参数,可以实现对负载母线电压的精确控制,保证系统的安全稳定运行。然而,MMC的控制策略仍存在诸多挑战,需要进一步的研究和探索,以提高MMC的性能和可靠性,推动其在电力领域的广泛应用。未来,结合先进的控制理论和人工智能技术,有望实现更加智能化、高效化的MMC控制策略。
⛳️ 运行结果
🔗 参考文献
[1] 唐爱红,程时杰.基于PSCAD/EMTDC的统一潮流控制器动态仿真模型[J].电网技术, 2005, 29(16):6.DOI:10.3321/j.issn:1000-3673.2005.16.002.
[2] 管敏渊.基于模块化多电平换流器的直流输电系统控制策略研究[D].浙江大学,2013.
[3] 管敏渊.基于模块化多电平换流器的直流输电系统控制策略研究[D].浙江大学[2025-04-07].
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇