压缩传感技术在小动物自门控心脏电影序列中的应用附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

 压缩传感 (Compressed Sensing, CS) 技术作为一种新兴的信号获取与重建理论,突破了传统奈奎斯特采样定理的限制,能够在欠采样的条件下实现信号的精确重建。该技术在医学影像领域,尤其是在心脏电影序列的采集和处理中展现出巨大的潜力。小动物心脏电影序列因其高时空分辨率的需求、动物呼吸运动的影响以及扫描时间的限制,传统方法面临诸多挑战。本文将深入探讨压缩传感技术在小动物自门控心脏电影序列中的应用,分析其优势、面临的挑战以及未来的发展方向,旨在推动该技术在小动物心脏研究和疾病诊断中的应用。

关键词: 压缩传感,自门控,心脏电影序列,小动物成像,欠采样,重建

引言

心脏疾病是威胁人类健康的主要因素之一,而对心脏结构和功能的精确评估是早期诊断和治疗的关键。磁共振成像 (Magnetic Resonance Imaging, MRI) 作为一种无创、非侵入式的成像技术,凭借其卓越的软组织对比度,在心脏疾病的诊断和研究中扮演着至关重要的角色。特别是心脏电影序列,能够实时展示心脏的运动状态,提供心功能指标,如射血分数、心肌收缩力等,对于评估心脏的健康状况具有重要价值。

小动物模型在心血管疾病研究中发挥着不可替代的作用,因为它们在生理结构、疾病模型构建等方面与人类具有高度相似性。然而,小动物心脏电影序列的采集面临着诸多挑战。首先,小动物的心跳频率远高于人类,导致所需的时间分辨率极高,需要在较短时间内采集大量数据。其次,小动物的呼吸运动频繁且不规律,严重影响图像质量,容易造成伪影。第三,MRI 扫描时间的限制,尤其是在麻醉状态下,需要快速采集图像以避免对动物产生不良影响。

传统的解决方案依赖于高采样率和呼吸门控技术。高采样率虽然可以满足时间分辨率的要求,但会显著增加扫描时间,并产生大量数据,对硬件设备和后续处理都带来巨大的压力。呼吸门控技术则通过检测动物的呼吸信号,仅采集特定呼吸相位的数据,虽然可以有效减少呼吸运动造成的伪影,但会显著降低数据采集效率,延长扫描时间。

压缩传感技术的出现为解决上述问题提供了新的思路。该技术能够在远低于奈奎斯特采样率的条件下,通过利用信号的稀疏性,实现信号的精确重建。在心脏电影序列的应用中,CS 技术允许在欠采样的条件下进行数据采集,从而缩短扫描时间,提高成像效率。此外,结合自门控技术,可以无需外部呼吸触发器,直接从采集到的数据中提取呼吸信息,进一步提高成像的便捷性和鲁棒性。

压缩传感技术的基本原理

压缩传感理论的核心思想是:如果一个信号在某个变换域是稀疏的,那么就可以通过少量的非相干测量来实现该信号的精确重建。其中,“稀疏性”指的是信号的大部分系数都为零或者接近于零,只有少部分系数具有显著的幅度;“非相干性”指的是测量矩阵与信号的稀疏变换矩阵之间具有较低的相关性,保证测量到的数据能够捕获到信号的本质信息。

具体而言,压缩传感过程可以分为三个步骤:

  1. 稀疏变换: 将原始信号(例如,心脏电影序列图像)通过某种变换(例如,小波变换、离散余弦变换)转换到另一个域,使其在该域中呈现稀疏性。

  2. 欠采样: 采用随机或者伪随机的采样模式,以低于奈奎斯特采样率的速率采集数据。常用的欠采样模式包括随机采样、径向采样、螺旋采样等。

  3. 重建: 通过优化算法,从欠采样的数据中恢复出原始信号。常用的重建算法包括迭代阈值算法、基追踪算法、总变分最小化算法等。这些算法旨在寻找一个在测量约束下,同时满足稀疏性条件的信号。

压缩传感技术在小动物自门控心脏电影序列中的应用

将压缩传感技术应用于小动物自门控心脏电影序列,可以有效地解决扫描时间长、呼吸运动伪影严重以及数据量大的问题。其主要应用体现在以下几个方面:

  1. 欠采样加速: 采用 CS 技术,可以在欠采样的条件下进行数据采集,从而显著缩短扫描时间。例如,可以采用随机或者径向采样模式,在 k 空间中进行欠采样,减少需要采集的数据量。更快的扫描速度对于小动物而言,可以减少麻醉时间,降低对动物的不良影响,提高成像的安全性。

  2. 自门控呼吸校正: 传统的呼吸门控技术需要外部呼吸触发器,这增加了实验的复杂性,并可能对动物产生干扰。自门控技术则无需外部触发器,直接从采集到的 k 空间数据中提取呼吸信息。通过分析 k 空间中心的数据,可以获得呼吸信号,然后根据呼吸信号对采集到的数据进行分类,将属于同一呼吸相位的数据进行重建。压缩传感技术可以与自门控技术相结合,在欠采样的条件下,同时实现心脏电影序列的加速和呼吸运动的校正。

  3. 提高时间分辨率: 压缩传感技术能够通过重建算法恢复出欠采样的数据,从而在相同扫描时间内获得更多的时间帧,提高时间分辨率。这对于捕捉小动物快速的心脏运动至关重要,可以更准确地评估心功能。

  4. 降低数据存储和处理负担: 由于 CS 技术允许在欠采样的条件下进行数据采集,因此可以显著减少需要存储和处理的数据量,减轻硬件设备和计算资源的压力。

具体方法和技术

以下列举几种将 CS 技术应用于小动物自门控心脏电影序列的具体方法和技术:

  • 基于总变分 (Total Variation, TV) 的 CS 重建: TV 正则化是一种常用的稀疏约束方法,它假设图像的梯度是稀疏的。将 TV 正则化项引入到 CS 重建算法中,可以有效地抑制噪声,提高图像质量。TV 正则化对于心脏电影序列的重建尤其有效,因为心脏图像往往具有平滑的区域和明显的边界。

  • 基于字典学习的 CS 重建: 字典学习是一种自适应的稀疏表示方法,它通过学习一组基函数(即字典),来最佳地表示给定的图像数据。将字典学习应用于心脏电影序列的重建,可以更好地利用图像的先验知识,提高重建精度。

  • 结合相位校正的 CS 重建: 在心脏电影序列的采集过程中,呼吸运动和心跳运动会导致相位误差,影响图像质量。可以将相位校正算法与 CS 重建算法相结合,在重建过程中同时校正相位误差,提高图像的清晰度。常用的相位校正算法包括 navigator 回波法和自校正法。

  • 基于深度学习的 CS 重建: 深度学习技术近年来在图像重建领域取得了显著的进展。可以将深度学习模型用于 CS 重建,通过训练大量的图像数据,学习到图像的先验知识,从而提高重建效率和精度。例如,可以使用卷积神经网络 (Convolutional Neural Network, CNN) 来实现 CS 重建,将欠采样的数据作为输入,重建出高质量的心脏图像。

面临的挑战

虽然压缩传感技术在小动物自门控心脏电影序列的应用中具有显著的优势,但也面临着一些挑战:

  1. 重建算法的计算复杂度: CS 重建算法通常需要迭代求解优化问题,计算复杂度较高,尤其是在处理大数据量时,计算时间较长。因此,需要开发更加高效的重建算法,缩短计算时间。

  2. 参数选择的敏感性: CS 重建算法的性能受到参数选择的影响,例如,正则化参数、迭代次数等。不同的参数选择可能会导致不同的重建结果。因此,需要研究更加鲁棒的参数选择方法,提高算法的稳定性。

  3. 运动伪影的校正: 虽然自门控技术可以减轻呼吸运动造成的伪影,但仍然可能存在其他运动造成的伪影,例如,心跳运动引起的伪影。需要开发更加先进的运动校正技术,进一步提高图像质量。

  4. 算法的验证和标准化: 需要对基于 CS 的心脏电影序列重建算法进行严格的验证,评估其在不同动物模型和不同心脏疾病情况下的性能。此外,还需要制定标准化的成像协议和重建流程,保证不同研究之间的可比性。

未来发展方向

压缩传感技术在小动物自门控心脏电影序列的应用前景广阔,未来的发展方向主要包括:

  1. 开发更高效的重建算法: 研究更加高效的重建算法,例如,基于深度学习的重建算法,利用 GPU 加速等技术,缩短计算时间,提高成像效率。

  2. 优化采样策略: 研究更加智能的采样策略,例如,基于人工智能的采样策略,根据图像的先验知识,自适应地调整采样模式,提高数据采集效率。

  3. 结合多模态成像: 将 CS 技术与其他成像技术(例如,PET、SPECT)相结合,实现多模态成像,提供更全面的心脏信息。

  4. 推广临床应用: 将 CS 技术应用于临床心脏 MRI,提高成像效率,降低患者负担,改善诊断效果。

结论

压缩传感技术为小动物自门控心脏电影序列的采集和处理提供了新的解决方案。通过欠采样加速、自门控呼吸校正以及提高时间分辨率等手段,CS 技术可以有效地解决扫描时间长、呼吸运动伪影严重以及数据量大的问题。虽然目前该技术仍然面临一些挑战,但随着重建算法的不断改进和硬件设备的不断发展,CS 技术将在小动物心脏研究和疾病诊断中发挥越来越重要的作用。未来,随着技术的不断进步,我们有理由相信,基于 CS 的心脏电影序列技术将会更加成熟、更加实用,为人类健康做出更大的贡献。

⛳️ 运行结果

🔗 参考文献

[1] 靳玉杰,马文锁.控制系统计算机辅助设计—MATLAB语言的应用[J].焦作大学学报, 2000, 14(1):3.DOI:CNKI:SUN:JZDX.0.2000-01-024.

[2] 赵健,李静,李幼德,等.模糊控制在四轮牵引力控制系统中的应用[J].吉林大学学报(工), 2005(02):111-0115.DOI:中国人民解放军总装备部“十五”预研项目.

[3] 李亮,查云飞,杨春英,等.心电门控技术64排CT测量正常胸主动脉弹性的初步研究[J].临床放射学杂志, 2011, 30(3):4.DOI:10.3969/j.issn.1005-9202.2006.02.008.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值