【图像加密】 Logistic混沌+Arnold置乱图像加密解密【含Matlab源码 1281期】

💥💥💞💞欢迎来到Matlab仿真科研站博客之家💞💞💥💥

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。

🍎个人主页:Matlab仿真科研站博客之家

🏆代码获取方式:
💥扫描文章底部QQ二维码💥

⛳️座右铭:行百里者,半于九十;路漫漫其修远兮,吾将上下而求索。
在这里插入图片描述

⛄更多Matlab图像处理(仿真科研站版)仿真内容点击👇
Matlab图像处理(仿真科研站版)

⛄一、混沌图像加密与解密简介

混沌系统图像加密解密理论部分参考链接:
基于混沌系统的图像加密算法设计与应用

⛄二、Arnold置乱图像加密解密简介

0 前言
网络已经成为我们传递信息的主要平台, 为我们提供诸多便捷的同时, 也存在一些安全问题, 特别是一些重要信息的传递.如果在信息传递前先对其进行加密, 能够在一定程度上保护所传递的信息.数字图像作为重要的信息资源在人们的生活中发挥着越来越重要的作用[1], 因此, 数字图像的加密是一项值得研究的重要课题.本文介绍的就是一种基于Arnold变换的图像加解密算法。

1 Arnold变换
将N*N图像上的点 (x, y) 通过如下变换转成 (x′, y′) 如式 (1) , 该变换即称为Arnold变换.通过变换公式可发现, 其变换的本质是点的位置的变换, 并且这种变换保证变换前后的点保持一一对应的关系。
在这里插入图片描述
如果将一次变换的输出作为下一次变换的输入, 这就是迭代变换如式 (2) .当一次变换置乱效果不佳时, 往往需要迭代变换获得更好的置乱效果。
在这里插入图片描述
2 基于Arnold变换的图像加解密
图像加密也称图像置乱, 是对图像的像素进行混乱和扩散, 使加密后的图像在视觉上无法获得有效信息.空域加密是常用的方法, 分为空域置乱和序列加密.空域置乱是对像素坐标进行变换使其混乱, 解密时恢复原像素坐标.图像的加密既可以作为独立的信息隐藏方法, 也可以用来作为数字水印技术中图像水印的预处理。

加密图像可以是灰度图像也可以是彩色图像, 如果是灰度图像则需要将各点的灰度值带到新的坐标点, 如果是彩色图像则需要将各点的RGB值带到新的坐标点.本文所加密的图像为彩色图像, 因此首先保存原图点 (x, y) 处的RGB值, 然后使用Arnold变换改变点 (x, y) 位置到 (x′, y′) , 同时将原图点 (x, y) 处的RGB值带到 (x′, y′) 处.我们采用256*256的彩色图像作为原始图像如图1a所示, 在Visual Studio2008平台下运用式 (1) 对原图进行一次Arnold变换, 变换后的效果如图1b所示.

由图1可知, 对图像进行一次Arnold变换后仍会留下较多信息, 故在此基础上继续使用Arnold变换, 通过5次变换后 (见图2b) 其结果在视觉上就很难再获得什么有价值的信息, 在视觉上起到了图像加密的作用.同时变换的次数往往可以作为密钥, 从而在一定程度上提高安全性。
在这里插入图片描述
图1 原图和一次Arnold变换结果
在这里插入图片描述
图2 第2次和第5次Arnold变换结果
然而此时的加密并不完全可靠, 若已知采用Arnold变换作为加密方式, 则通过暴力求解法, 经过若干次的变换还是可以解密出原图.因此在一般情况下, 我们往往需要在Arnold变换中加入密钥 (ku, kv) , 以提高安全性, 其公式如下:
在这里插入图片描述
当需要对图像进行解密时, 则根据加密后的图像中的像素点与原图中的像素点是一一对应的关系进行解密, 因此图像解密的过程为:根据原图中像素点的坐标 (x, y) 按照Arnold变换算出新图中像素点的坐标 (x′, y′) , 获取新像素点 (x′, y′) 的RGB值, 将该值归还给 (x, y) .根据加密过程使用的变换次数, 解密时则要将以上过程重复相应的次数就可以恢复原图 (见图3) 。

3 基于三维Arnold变换的图像加密
前面提到的图像置乱是通过打乱像素点位置而达成目标, 图像的颜色分量值是保持不变的.因此为了提高加密效果, 我们可以在像素点位置已乱的前提下, 再通过改变RGB颜色分量的值对图像进行加密.采用如下三维Arnold变换 (如式4) 进行RGB分量值的改变。
在这里插入图片描述
我们将一次Arnold变换后的图像作为原始图像, 在此基础上对各像素点的RGB采用以上公式进行扰乱, 获得如图4所示结果.通过两种加密方式的综合, 则进一步提高了加密图像的安全性.式4中的值可以做相应的改变, 同时可以将变换的次数作为密钥提高安全性。
在这里插入图片描述
图3 第五次Arnold变换结果, 恢复后的加密图像
在这里插入图片描述
图4 第一次Arnold变换结果, RGB扰乱后的加密图像

⛄三、部分源代码

function jiami
% NOTE:请修改 testImgName,来测试不同输入图像,支持灰度图和 RGB 图
% testImgName = ‘lena’;
% testImgName = ‘lena_color’;
% testImgName = ‘color0’;
% testImgName = ‘lena16x16’;
% testImgName = ‘gray32x32’;
% testImgName = ‘gray2’;
testImgName = ‘pepper_gray’;
% testImgName = ‘1Pixel’;
img = imread(strcat(testImgName, ‘.png’));
[w h rgb] = size(img);
% chaos映射预迭代次数,Logistic映射初始值x0,mu,Arnold置乱次数
Key = [128, 0.7532, 3.8793, 2];

% NOTE:请修改 encryptCount,来测试不同加密次数
% 加密次数
encryptCount = 2;

% 加密
imgEncrypted = img;
for i = 1 : encryptCount
imgEncrypted = encrypt(imgEncrypted, Key);
end

disp(‘###############################’);

% 信息熵计算
if rgb == 3
% 彩色图像
imgR = imgEncrypted(:, :, 1);
imgG = imgEncrypted(:, :, 2);
imgB = imgEncrypted(:, :, 3);
entropyR = informationEntropy(imgR);
entropyG = informationEntropy(imgG);
entropyB = informationEntropy(imgB);
disp(strcat(‘------’, testImgName, ‘,加密次数为:’, num2str(encryptCount), ‘,信息熵 R:’, num2str(entropyR), ‘,G:’, num2str(entropyG), ‘,B:’, num2str(entropyB), ‘------’));
imgR = img(:, :, 1);
imgG = img(:, :, 2);
imgB = img(:, :, 3);
entropyR = informationEntropy(imgR);
entropyG = informationEntropy(imgG);
entropyB = informationEntropy(imgB);
disp(strcat(‘------’, testImgName, ‘,原图信息熵 R:’, num2str(entropyR), ‘,G:’, num2str(entropyG), ‘,B:’, num2str(entropyB), ‘------’));
else
% 灰度图像

% 统计输出
figure;
if rgb == 3
% 彩色图像
subplot(4, 2, 1);
imshow(uint8(img));
title(‘明文’);
subplot(4, 2, 2);
imshow(imgEncrypted);
title(‘密文’);

imgR = img(:, :, 1);
imgG = img(:, :, 2);
imgB = img(:, :, 3);
subplot(4, 2, 3);
imhist(uint8(imgR));
title('明文R分量直方图');
subplot(4, 2, 5);
imhist(uint8(imgG));
title('明文G分量直方图');
subplot(4, 2, 7);
imhist(uint8(imgB));
title('明文B分量直方图');

imgEncryptedR = imgEncrypted(:, :, 1);
imgEncryptedG = imgEncrypted(:, :, 2);
imgEncryptedB = imgEncrypted(:, :, 3);
subplot(4, 2, 4);
imhist(imgEncryptedR);
title('密文R分量直方图');
subplot(4, 2, 6);
imhist(imgEncryptedG);
title('密文G分量直方图');
subplot(4, 2, 8);
imhist(imgEncryptedB);
title('密文B分量直方图');

else
% 灰度图像
subplot(2, 2, 1);
imshow(uint8(img));
title(‘明文’);
subplot(2, 2, 2);
imshow(uint8(imgEncrypted));
title(‘密文’);
subplot(2, 2, 3);
imhist(uint8(img));
title(‘明文直方图’);
subplot(2, 2, 4);
imhist(uint8(imgEncrypted));
title(‘密文直方图’);
end

% 图像受损测试
% 椒盐噪声
delta = 0.02;
imgEncrypted_Noise_Salt = imnoise(imgEncrypted, ‘salt & pepper’, delta);
imgDecrypted_Noise_Salt = imgEncrypted_Noise_Salt;
for i = 1 : encryptCount
imgDecrypted_Noise_Salt = decrypt(imgDecrypted_Noise_Salt, Key);
end
imgDecrypted_Noise_Salt = uint8(imgDecrypted_Noise_Salt);

% 高斯噪声
imgEncrypted_Noise_Gaussian = imnoise(imgEncrypted, ‘gaussian’, delta);
imgDecrypted_Noise_Gaussian = imgEncrypted_Noise_Gaussian;
for i = 1 : encryptCount
imgDecrypted_Noise_Gaussian = decrypt(imgDecrypted_Noise_Gaussian, Key);

% 剪切
imgEncrypted_Croped = crop(imgEncrypted);
imgDecrypted_Croped = imgEncrypted_Croped;
for i = 1 : encryptCount
imgDecrypted_Croped = decrypt(imgDecrypted_Croped, Key);
end
imgDecrypted_Croped = uint8(imgDecrypted_Croped);

figure;
subplot(3, 3, 1);imshow(imgEncrypted);title(‘加密后图像’);
subplot(3, 3, 2);imshow(imgEncrypted_Noise_Salt);title(strcat(‘(1)椒盐噪声ρ=’, num2str(delta)));
subplot(3, 3, 3);imshow(imgDecrypted_Noise_Salt);title(‘(1)解密图像’);
subplot(3, 3, 5);imshow(imgEncrypted_Noise_Gaussian);title(strcat(‘(2)高斯噪声μ=0,σ=’, num2str(delta)));
subplot(3, 3, 6);imshow(imgDecrypted_Noise_Gaussian);title(‘(2)解密图像’);
subplot(3, 3, 8);imshow(imgEncrypted_Croped);title(‘(3)1/16剪切’);
subplot(3, 3, 9);imshow(imgDecrypted_Croped);title(‘(3)解密图像’);

% 明文敏感性

% 彩色图像
gray = imgPlain(w, h, 1);

% bin = dec2bin(gray);
gray = bitxor(gray, 1);
imgPlain(w, h, 1) = gray;
else
% 灰度图像
gray = imgPlain(w, h);
% bin = dec2bin(gray);
gray = bitxor(gray, 1);
imgPlain(w, h) = gray;
end

imgEncrypted1 = imgPlain;
for i = 1 : encryptCount
imgEncrypted1 = encrypt(imgEncrypted1, Key);
end

% 密钥敏感性
Key2 = [128, 0.753200000000001, 3.8793, 1];
imgDecryptedWithKey2 = imgEncrypted;
for i = 1 : encryptCount
imgDecryptedWithKey2 = decrypt(imgDecryptedWithKey2, Key2);
end
figure;
title(strcat(num2str(encryptCount), ‘轮加密’));
subplot(2, 2, 1);
imshow(img);title(‘明文’);
subplot(2, 2, 2);
imshow(imgEncrypted);title(‘密文’);
subplot(2, 2, 3);
imshow(imgDecrypted);title(‘原始密钥的解密结果’);
subplot(2, 2, 4);
imshow(imgDecryptedWithKey2);title(‘密钥改变一位的解密结果’);

disp(strcat(‘------’, testImgName, ‘,加密次数为:’, num2str(encryptCount), ‘,密钥敏感性分析------’));
NPCR(imgEncrypted, imgEncrypted2, ‘密钥改变1个值’);
UACI(imgEncrypted, imgEncrypted2, ‘密钥改变1个值’);

% 相关性
relationType = 2;
relationCount = 1024;
if rgb == 3
% 彩色图像

imgEncryptedR = imgEncrypted(:, :, 1);
imgEncryptedG = imgEncrypted(:, :, 2);
imgEncryptedB = imgEncrypted(:, :, 3);

imgRrelation = relation(imgR, relationType, relationCount, strcat('------', testImgName, ',明文R分量'));
imgGrelation = relation(imgG, relationType, relationCount, strcat('------', testImgName, ',明文G分量'));
imgBrelation = relation(imgB, relationType, relationCount, strcat('------', testImgName, ',明文B分量'));
imgEncryptedRrelation = relation(imgEncryptedR, relationType, relationCount, strcat('------', testImgName, ',密文R分量'));
imgEncryptedGrelation = relation(imgEncryptedG, relationType, relationCount, st
subplot(2, 3, 1);
plot(imgRrelation(1, :), imgRrelation(2, :), '.');
axis([0 256 0 256]);
title('明文R分量灰度值水平相关性');
subplot(2, 3, 2);
plot(imgGrelation(1, :), imgGrelation(2, :), '.');
axis([0 256 0 256]);
title('明文G分量');
subplot(2, 3, 3);
plot(imgBrelation(1, :), imgBrelation(2, :), '.');
axis([0 256 0 256]);
title('明文B分量');

subplot(2, 3, 4);
plot(imgEncryptedRrelation(1, :), imgEncryptedRrelation(2, :), '.');
axis([0 256 0 256]);
title('密文R分量灰度值水平相关性');
subplot(2, 3, 5);
plot(imgEncryptedGrelation(1, :), imgEncryptedGrelation(2, :), '.');
axis([0 256 0 256]);
title('密文G分量');
subplot(2, 3, 6);
plot(imgEncryptedBrelation(1, :), imgEncryptedBrelation(2, :), '.');
axis([0 256 0 256]);
title('密文B分量');    

else
% 灰度图像

figure;
subplot(2, 1, 1);
plot(imgrelation(1, :), imgrelation(2, :), '.');
axis([0 256 0 256]);
title('明文灰度值水平相关性');xlabel('位置(i,j)的像素灰度值');ylabel('位置(i+1,j)的像素灰度值');
subplot(2, 1, 2);
plot(imgEncryptedrelation(1, :), imgEncryptedrelation(2, :), '.');
axis([0 256 0 256]);
title('密文灰度值水平相关性');xlabel('位置(i,j)的像素灰度值');ylabel('位置(i+1,j)的像素灰度值');

end

end

% 加密图像img,Key为密钥矩阵
function imgEncrypted = encrypt(img, Key)
img = double(img);
[w h rgb] = size(img);

if rgb == 3
% 彩色图像

else
% 灰度图像
% % 灰度值替换
% img = logisticReplace(img, Key(3), Key(2), Key(1));
%
% 三维置乱
lengthImg = w * h;
L = floor(lengthImg ^ (1 / 3));
lengthCube = L ^ 3;
img = reshape(img, lengthImg, 1);
Cube1 = reshape(img(1 : lengthCube), L, L, L);
Cube1 = triplePermution(Cube1);

% 变换到二维图像
imgEncrypted(1 : lengthCube, 1) = reshape(Cube1, lengthCube, 1);
imgEncrypted(lengthCube + 1 : lengthImg, 1) = img(lengthCube + 1 : lengthImg, 1);
imgEncrypted = reshape(imgEncrypted, w, h);

% Arnold置乱
imgEncrypted = arnoldPermution(imgEncrypted, Key(4));

end
imgEncrypted = uint8(imgEncrypted);
end

% 加密图像img,Key为密钥矩阵
function imgDecrypted = decrypt(img, Key)
img = double(img);
[w h rgb] = size(img);

if rgb == 3
% 彩色图像

else
% 灰度图像
% Arnold逆置乱
img = arnoldDePermution(img, Key(4));
%
% 三维逆置乱
lengthImg = w * h;
L = floor(lengthImg ^ (1 / 3));
lengthCube = L ^ 3;
img = reshape(img, lengthImg, 1);
Cube1 = reshape(img(1 : lengthCube), L, L, L);
Cube1 = tripleDePermution(Cube1);

% 变换到二维图像
imgDecrypted(1 : lengthCube, 1) = reshape(Cube1, lengthCube, 1);
imgDecrypted(lengthCube + 1 : lengthImg, 1) = img(lengthCube + 1 : lengthImg, 1);
imgDecrypted = reshape(imgDecrypted, w, h);

% % 灰度值替换
% imgDecrypted = logisticDeReplace(imgDecrypted, Key(3), Key(2), Key(1));
end
imgDecrypted = uint8(imgDecrypted);
end

⛄四、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

⛄五、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]邢顺来,李志斌,周华成.基于Arnold变换和混沌映射的图像加密方法[J].山东广播电视大学学报. 2012,(01)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

1.1 PID优化
1.2 VMD优化
1.3 配电网重构
1.4 三维装箱
1.5 微电网优化
1.6 优化布局
1.7 优化参数
1.8 优化成本
1.9 优化充电
1.10 优化调度
1.11 优化电价
1.12 优化发车
1.13 优化分配
1.14 优化覆盖
1.15 优化控制
1.16 优化库存
1.17 优化路由
1.18 优化设计
1.19 优化位置
1.20 优化吸波
1.21 优化选址
1.22 优化运行
1.23 优化指派
1.24 优化组合
1.25 车间调度
1.26 生产调度
1.27 经济调度
1.28 装配线调度
1.29 水库调度
1.30 货位优化
1.31 公交排班优化
1.32 集装箱船配载优化
1.33 水泵组合优化
1.34 医疗资源分配优化
1.35 可视域基站和无人机选址优化

2 机器学习和深度学习分类与预测
2.1 机器学习和深度学习分类
2.1.1 BiLSTM双向长短时记忆神经网络分类
2.1.2 BP神经网络分类
2.1.3 CNN卷积神经网络分类
2.1.4 DBN深度置信网络分类
2.1.5 DELM深度学习极限学习机分类
2.1.6 ELMAN递归神经网络分类
2.1.7 ELM极限学习机分类
2.1.8 GRNN广义回归神经网络分类
2.1.9 GRU门控循环单元分类
2.1.10 KELM混合核极限学习机分类
2.1.11 KNN分类
2.1.12 LSSVM最小二乘法支持向量机分类
2.1.13 LSTM长短时记忆网络分类
2.1.14 MLP全连接神经网络分类
2.1.15 PNN概率神经网络分类
2.1.16 RELM鲁棒极限学习机分类
2.1.17 RF随机森林分类
2.1.18 SCN随机配置网络模型分类
2.1.19 SVM支持向量机分类
2.1.20 XGBOOST分类

2.2 机器学习和深度学习预测
2.2.1 ANFIS自适应模糊神经网络预测
2.2.2 ANN人工神经网络预测
2.2.3 ARMA自回归滑动平均模型预测
2.2.4 BF粒子滤波预测
2.2.5 BiLSTM双向长短时记忆神经网络预测
2.2.6 BLS宽度学习神经网络预测
2.2.7 BP神经网络预测
2.2.8 CNN卷积神经网络预测
2.2.9 DBN深度置信网络预测
2.2.10 DELM深度学习极限学习机预测
2.2.11 DKELM回归预测
2.2.12 ELMAN递归神经网络预测
2.2.13 ELM极限学习机预测
2.2.14 ESN回声状态网络预测
2.2.15 FNN前馈神经网络预测
2.2.16 GMDN预测
2.2.17 GMM高斯混合模型预测
2.2.18 GRNN广义回归神经网络预测
2.2.19 GRU门控循环单元预测
2.2.20 KELM混合核极限学习机预测
2.2.21 LMS最小均方算法预测
2.2.22 LSSVM最小二乘法支持向量机预测
2.2.23 LSTM长短时记忆网络预测
2.2.24 RBF径向基函数神经网络预测
2.2.25 RELM鲁棒极限学习机预测
2.2.26 RF随机森林预测
2.2.27 RNN循环神经网络预测
2.2.28 RVM相关向量机预测
2.2.29 SVM支持向量机预测
2.2.30 TCN时间卷积神经网络预测
2.2.31 XGBoost回归预测
2.2.32 模糊预测
2.2.33 奇异谱分析方法SSA时间序列预测

2.3 机器学习和深度学习实际应用预测
CPI指数预测、PM2.5浓度预测、SOC预测、财务预警预测、产量预测、车位预测、虫情预测、带钢厚度预测、电池健康状态预测、电力负荷预测、房价预测、腐蚀率预测、故障诊断预测、光伏功率预测、轨迹预测、航空发动机寿命预测、汇率预测、混凝土强度预测、加热炉炉温预测、价格预测、交通流预测、居民消费指数预测、空气质量预测、粮食温度预测、气温预测、清水值预测、失业率预测、用电量预测、运输量预测、制造业采购经理指数预测

3 图像处理方面
3.1 图像边缘检测
3.2 图像处理
3.3 图像分割
3.4 图像分类
3.5 图像跟踪
3.6 图像加密解密
3.7 图像检索
3.8 图像配准
3.9 图像拼接
3.10 图像评价
3.11 图像去噪
3.12 图像融合
3.13 图像识别
3.13.1 表盘识别
3.13.2 车道线识别
3.13.3 车辆计数
3.13.4 车辆识别
3.13.5 车牌识别
3.13.6 车位识别
3.13.7 尺寸检测
3.13.8 答题卡识别
3.13.9 电器识别
3.13.10 跌倒检测
3.13.11 动物识别
3.13.12 二维码识别
3.13.13 发票识别
3.13.14 服装识别
3.13.15 汉字识别
3.13.16 红绿灯识别
3.13.17 虹膜识别
3.13.18 火灾检测
3.13.19 疾病分类
3.13.20 交通标志识别
3.13.21 卡号识别
3.13.22 口罩识别
3.13.23 裂缝识别
3.13.24 目标跟踪
3.13.25 疲劳检测
3.13.26 旗帜识别
3.13.27 青草识别
3.13.28 人脸识别
3.13.29 人民币识别
3.13.30 身份证识别
3.13.31 手势识别
3.13.32 数字字母识别
3.13.33 手掌识别
3.13.34 树叶识别
3.13.35 水果识别
3.13.36 条形码识别
3.13.37 温度检测
3.13.38 瑕疵检测
3.13.39 芯片检测
3.13.40 行为识别
3.13.41 验证码识别
3.13.42 药材识别
3.13.43 硬币识别
3.13.44 邮政编码识别
3.13.45 纸牌识别
3.13.46 指纹识别

3.14 图像修复
3.15 图像压缩
3.16 图像隐写
3.17 图像增强
3.18 图像重建

4 路径规划方面
4.1 旅行商问题(TSP)
4.1.1 单旅行商问题(TSP)
4.1.2 多旅行商问题(MTSP)
4.2 车辆路径问题(VRP)
4.2.1 车辆路径问题(VRP)
4.2.2 带容量的车辆路径问题(CVRP)
4.2.3 带容量+时间窗+距离车辆路径问题(DCTWVRP)
4.2.4 带容量+距离车辆路径问题(DCVRP)
4.2.5 带距离的车辆路径问题(DVRP)
4.2.6 带充电站+时间窗车辆路径问题(ETWVRP)
4.2.3 带多种容量的车辆路径问题(MCVRP)
4.2.4 带距离的多车辆路径问题(MDVRP)
4.2.5 同时取送货的车辆路径问题(SDVRP)
4.2.6 带时间窗+容量的车辆路径问题(TWCVRP)
4.2.6 带时间窗的车辆路径问题(TWVRP)
4.3 多式联运运输问题

4.4 机器人路径规划
4.4.1 避障路径规划
4.4.2 迷宫路径规划
4.4.3 栅格地图路径规划

4.5 配送路径规划
4.5.1 冷链配送路径规划
4.5.2 外卖配送路径规划
4.5.3 口罩配送路径规划
4.5.4 药品配送路径规划
4.5.5 含充电站配送路径规划
4.5.6 连锁超市配送路径规划
4.5.7 车辆协同无人机配送路径规划

4.6 无人机路径规划
4.6.1 飞行器仿真
4.6.2 无人机飞行作业
4.6.3 无人机轨迹跟踪
4.6.4 无人机集群仿真
4.6.5 无人机三维路径规划
4.6.6 无人机编队
4.6.7 无人机协同任务
4.6.8 无人机任务分配

5 语音处理
5.1 语音情感识别
5.2 声源定位
5.3 特征提取
5.4 语音编码
5.5 语音处理
5.6 语音分离
5.7 语音分析
5.8 语音合成
5.9 语音加密
5.10 语音去噪
5.11 语音识别
5.12 语音压缩
5.13 语音隐藏

6 元胞自动机方面
6.1 元胞自动机病毒仿真
6.2 元胞自动机城市规划
6.3 元胞自动机交通流
6.4 元胞自动机气体
6.5 元胞自动机人员疏散
6.6 元胞自动机森林火灾
6.7 元胞自动机生命游戏

7 信号处理方面
7.1 故障信号诊断分析
7.1.1 齿轮损伤识别
7.1.2 异步电机转子断条故障诊断
7.1.3 滚动体内外圈故障诊断分析
7.1.4 电机故障诊断分析
7.1.5 轴承故障诊断分析
7.1.6 齿轮箱故障诊断分析
7.1.7 三相逆变器故障诊断分析
7.1.8 柴油机故障诊断

7.2 雷达通信
7.2.1 FMCW仿真
7.2.2 GPS抗干扰
7.2.3 雷达LFM
7.2.4 雷达MIMO
7.2.5 雷达测角
7.2.6 雷达成像
7.2.7 雷达定位
7.2.8 雷达回波
7.2.9 雷达检测
7.2.10 雷达数字信号处理
7.2.11 雷达通信
7.2.12 雷达相控阵
7.2.13 雷达信号分析
7.2.14 雷达预警
7.2.15 雷达脉冲压缩
7.2.16 天线方向图
7.2.17 雷达杂波仿真

7.3 生物电信号
7.3.1 肌电信号EMG
7.3.2 脑电信号EEG
7.3.3 心电信号ECG
7.3.4 心脏仿真

7.4 通信系统
7.4.1 DOA估计
7.4.2 LEACH协议
7.4.3 编码译码
7.4.4 变分模态分解
7.4.5 超宽带仿真
7.4.6 多径衰落仿真
7.4.7 蜂窝网络
7.4.8 管道泄漏
7.4.9 经验模态分解
7.4.10 滤波器设计
7.4.11 模拟信号传输
7.4.12 模拟信号调制
7.4.13 数字基带信号
7.4.14 数字信道
7.4.15 数字信号处理
7.4.16 数字信号传输
7.4.17 数字信号去噪
7.4.18 水声通信
7.4.19 通信仿真
7.4.20 无线传输
7.4.21 误码率仿真
7.4.22 现代通信
7.4.23 信道估计
7.4.24 信号检测
7.4.25 信号融合
7.4.26 信号识别
7.4.27 压缩感知
7.4.28 噪声仿真
7.4.29 噪声干扰

7.5 无人机通信

7.6 无线传感器定位及布局方面
7.6.1 WSN定位
7.6.2 高度预估
7.6.3 滤波跟踪
7.6.4 目标定位
7.6.4.1 Dv-Hop定位
7.6.4.2 RSSI定位
7.6.4.3 智能算法优化定位
7.6.5 组合导航

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值