【优化指派】禁忌搜索算法求解指派优化问题(耗时最短)【含Matlab源码 2518期】

💥💥💞💞欢迎来到Matlab仿真科研站博客之家💞💞💥💥

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。

🍎个人主页:Matlab仿真科研站博客之家

🏆代码获取方式:
💥扫描文章底部QQ二维码💥

⛳️座右铭:行百里者,半于九十;路漫漫其修远兮,吾将上下而求索。
在这里插入图片描述

⛄更多Matlab优化求解仿真内容点击👇
Matlab优化求解(仿真科研站版)

⛄一、飞机指派模型的建立简介

1 引 言
机场停机位指派是指在给定的作业时间窗内,考虑执行航班的机型、停机位类型及航班时刻等因素,指派航班到有限的停机位上实现停靠,以保证客货的有效衔接,是机场飞行区地面作业的一项核心任务. 合理、高效的停机位指派,不仅能够为到离港航班提供及时、有效的地面服务保障,从而保证航班计划的有效实施,而且,可以大大提高机场
资源的使用效率和机场的运营管理水平,从而保证机场的流畅运作,提高旅客满意率水平。同时,对于降低航空公司地面运行成本也有重要现实意义.
停机位指派问题是典型的 0 - 1 整数规划问题,也是 NP-hard 问题[1]. 国内外学者过去进行了较多研究. 国内研究方面,文军等[2]通过分析航班占用停机位的特性,建立了 GAP( Gate assignment problem) 问题的排序模型,并引入机位标号函数和航班标号函数,设计了一种求解模型的标号算法.王力等[3]以旅客登转机时间和机型—停机位类型匹配为优化目标,设计了求解模型的禁忌搜索算法. 陈欣等[4]通过设计的一种排序模拟退火算法,研究了以旅客总步行距离最短为目标的停机位指派问题. 杨文东等[5]通过构造停机位航班连接树的方法,研究了以航班延误和停机位空闲时间最小
为目标的停机位指派问题. 熊杰等[6]以飞机地面滑行油耗成本最低为优化目标,研究了如何通过优化机位分配降低飞机地面油耗成本的停机位分配问题. 文军[7]通过分析飞机占用停机位时区集合的特点,应用划分时间片算法建立了停机位分配的图论模型. 常钢等[8]详细介绍了停机位分配问题的研究的发展历程、建模技术,以及模型的优化求解方法.

2 停机位综合效能关键因素分析
从机场停机位指派的运行实际看,指派过程涉及三个方面的利益,在这个过程中所产生的成本主要包括:
( 1) 航空公司飞机地面滑行成本.航空燃油成本在航空公司的运营成本中一直占有比较大的比例,近年来,由于国际油价持续攀升,航空公司面临的油耗成本压力也在逐年加大.所以,尽可能的减少油料消耗,节约运输成本一直是航空公司最为关注和着力解决的问题. 在停机位指派问题中,由于停机位的选择直接决定飞机从快速脱离口到停机位的地面滑行距离,从而决定飞机的地面滑行成本. 因此,停机位指派方案对飞机的地面滑行成本具有直接的影响. 尤其是在多跑道机场,飞机穿越跑道停靠机位,对地面滑行成本的影响更为突出.
( 2) 机场停机位利用成本.
停机位是机场的稀缺资源,停机位的利用率越高,它可以服务的航班数量就越多,其高额建设投入产生的经济效益就越大. 因此机场运营管理人员总是尽可能地提高停机位的利用率,或降低停机位空闲率. 停机位空闲率可以定义为机位空闲时间与机位可用时间之比. 机位空闲时间以停靠该机位所有航班的到港和离港时间确定.

  1. 旅客满意率水平.
    航班到达机场后,旅客提取行李的方便和快捷程度,是旅客衡量机场服务满意程度的重要指标之一. 因此,为了提高旅客对机场服务的满意率水平,机场应尽可能地将航班指派到距离行李提取处最近的停机位.
    综上所述,停机位综合效能可以用三个指标进行度量,即飞机地面滑行成本、停机位利用率以及旅客满意率水平. 这三个指标属不同量纲,可都将其转化为成本指标进行研究,即飞机地面滑行成本、停机位空闲时间成本、及旅客从停机位到行李提取处的行走成本.

2 禁忌搜索启发式算法
Step 1 ( 初值设定)
根据贪婪算法生成的初始解 znow,令 zbest =znow,初始化禁忌条件,令 iter = 0;
Step 2 ( 终止条件)
如果 iter ≥ max_iter 则中止程序,记录并输出zbest,否则,转入 Step3;
Step 3 ( 邻域搜索)
产生当前解 znow 的所有邻域解 ztrial ∈ N( Znow) ;
Step 4 ( 藐视准则)
对 znow 的 邻 域 解 ztrial,其 对 应 的 适 配 值 为f( ztrial ) ,记 录 最 小 的 f( ztrial ) ,如 果 有 f( ztrial ) ≤f( zbesr) ,则进行操作 zbest = ztrial ( 藐视准则) ,将 ztrial
与 znow 的交换作为禁忌对象替换最早进入禁忌表的禁忌对象,转 Step6; 否则,继续 Step5;
Step 5 ( 分散搜索)
判断邻域解对应得各对象的禁忌属性,在候选解集非禁忌对象中选取使得 f( ztrial ) 最小的邻域解最为 ztrial,进行操作 zbest = ztrial,同时将 ztrial 与 znow的交换作为禁忌对象替换最早进入禁忌表的禁忌对象;
Step 6 ( 更新)
iter = iter + 1,转至 Step2.
在禁忌搜索算法中禁忌搜索的邻域结构是求解算法中一个关键之处. 在本算法中以每一个停机位的指派方案作为基本结构. 一个邻域结构由任意两个停机位的指派方案构成,并通过插入移动,或交换移动构造新的邻域结构.插入移动将一个航班从一个机位移动到另一个机位,即( i,k) → ( i,l) .
交换移动
将不同机位上的两个航班区间进行交换. 一个航班区间可以包含一个或多个航班,即( a,b,k)→( c,d,l) ,表示将k机位上航班a,b之间的航班串与 l 机位上航班 c,d 之间的航班串交换.

⛄二、部分源代码

%初始化
clear all; %清除所有变量
close all; %清图
clc; %清屏
A=[23,21,16,15,17,18,20,22,19;
20,15,24,18,22,17,21,19,16;
23,17,16,19,21,22,13,20,18;
16,21,17,20,19,23,16,18,32;
12,23,26,17,19,20,13,16,15;
18,13,17,25,21,23,16,15,19;
22,21,18,15,20,16,19,20,17;
23,22,17,19,18,15,20,19,16;
17,22,15,21,19,23,18,16,20]; %9人每项工作用时
N=9;
% % % % % 初始化% % % % % % % % % % % %
x=[1,2,3,4,5,6,7,8,9]; %给定初始解
% % % % % % 禁忌对象为以互换工作的两人构成的数对% % % % % % % % % % % %
TabuL=7; %禁忌长度
Tabu=zeros(TabuL,2); %禁忌表

% 领域的产生为任一交换两个人的任务
CaNum=36; %邻域解的个数=C(2,9)
Ca=zeros(CaNum,N); %领域解集合
CaTime=zeros(CaNum,1);

bestx=x; %当前最佳解
BestT=Inf; %当前最短用时

p=1; %迭代次数初始化
G=100; %最大迭代次数

% 禁忌搜索循环
while p<G
Time§=func2(x) %当前解适配值
%交换两人的工作,产生领域解集
m=1;x1=x;
for i=1:1:8
for j=i+1:1:9
b=x1(j);
x1(j)=x1(i);%交换两人的工作,即交换当前解x中任意两元素的位置
x1(i)=b;
Ca(m,:)=x1;
CaTime(m,:)=func2(x1);
m=m+1;
x1=x;
end
end

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]李军会,朱金福,高强.基于贪婪禁忌算法的停机位指派问题研究[J].交通运输系统工程与信息

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

1.1 PID优化
1.2 VMD优化
1.3 配电网重构
1.4 三维装箱
1.5 微电网优化
1.6 优化布局
1.7 优化参数
1.8 优化成本
1.9 优化充电
1.10 优化调度
1.11 优化电价
1.12 优化发车
1.13 优化分配
1.14 优化覆盖
1.15 优化控制
1.16 优化库存
1.17 优化路由
1.18 优化设计
1.19 优化位置
1.20 优化吸波
1.21 优化选址
1.22 优化运行
1.23 优化指派
1.24 优化组合
1.25 车间调度
1.26 生产调度
1.27 经济调度
1.28 装配线调度
1.29 水库调度
1.30 货位优化
1.31 公交排班优化
1.32 集装箱船配载优化
1.33 水泵组合优化
1.34 医疗资源分配优化
1.35 可视域基站和无人机选址优化

2 机器学习和深度学习分类与预测
2.1 机器学习和深度学习分类
2.1.1 BiLSTM双向长短时记忆神经网络分类
2.1.2 BP神经网络分类
2.1.3 CNN卷积神经网络分类
2.1.4 DBN深度置信网络分类
2.1.5 DELM深度学习极限学习机分类
2.1.6 ELMAN递归神经网络分类
2.1.7 ELM极限学习机分类
2.1.8 GRNN广义回归神经网络分类
2.1.9 GRU门控循环单元分类
2.1.10 KELM混合核极限学习机分类
2.1.11 KNN分类
2.1.12 LSSVM最小二乘法支持向量机分类
2.1.13 LSTM长短时记忆网络分类
2.1.14 MLP全连接神经网络分类
2.1.15 PNN概率神经网络分类
2.1.16 RELM鲁棒极限学习机分类
2.1.17 RF随机森林分类
2.1.18 SCN随机配置网络模型分类
2.1.19 SVM支持向量机分类
2.1.20 XGBOOST分类

2.2 机器学习和深度学习预测
2.2.1 ANFIS自适应模糊神经网络预测
2.2.2 ANN人工神经网络预测
2.2.3 ARMA自回归滑动平均模型预测
2.2.4 BF粒子滤波预测
2.2.5 BiLSTM双向长短时记忆神经网络预测
2.2.6 BLS宽度学习神经网络预测
2.2.7 BP神经网络预测
2.2.8 CNN卷积神经网络预测
2.2.9 DBN深度置信网络预测
2.2.10 DELM深度学习极限学习机预测
2.2.11 DKELM回归预测
2.2.12 ELMAN递归神经网络预测
2.2.13 ELM极限学习机预测
2.2.14 ESN回声状态网络预测
2.2.15 FNN前馈神经网络预测
2.2.16 GMDN预测
2.2.17 GMM高斯混合模型预测
2.2.18 GRNN广义回归神经网络预测
2.2.19 GRU门控循环单元预测
2.2.20 KELM混合核极限学习机预测
2.2.21 LMS最小均方算法预测
2.2.22 LSSVM最小二乘法支持向量机预测
2.2.23 LSTM长短时记忆网络预测
2.2.24 RBF径向基函数神经网络预测
2.2.25 RELM鲁棒极限学习机预测
2.2.26 RF随机森林预测
2.2.27 RNN循环神经网络预测
2.2.28 RVM相关向量机预测
2.2.29 SVM支持向量机预测
2.2.30 TCN时间卷积神经网络预测
2.2.31 XGBoost回归预测
2.2.32 模糊预测
2.2.33 奇异谱分析方法SSA时间序列预测

2.3 机器学习和深度学习实际应用预测
CPI指数预测、PM2.5浓度预测、SOC预测、财务预警预测、产量预测、车位预测、虫情预测、带钢厚度预测、电池健康状态预测、电力负荷预测、房价预测、腐蚀率预测、故障诊断预测、光伏功率预测、轨迹预测、航空发动机寿命预测、汇率预测、混凝土强度预测、加热炉炉温预测、价格预测、交通流预测、居民消费指数预测、空气质量预测、粮食温度预测、气温预测、清水值预测、失业率预测、用电量预测、运输量预测、制造业采购经理指数预测

3 图像处理方面
3.1 图像边缘检测
3.2 图像处理
3.3 图像分割
3.4 图像分类
3.5 图像跟踪
3.6 图像加密解密
3.7 图像检索
3.8 图像配准
3.9 图像拼接
3.10 图像评价
3.11 图像去噪
3.12 图像融合
3.13 图像识别
3.13.1 表盘识别
3.13.2 车道线识别
3.13.3 车辆计数
3.13.4 车辆识别
3.13.5 车牌识别
3.13.6 车位识别
3.13.7 尺寸检测
3.13.8 答题卡识别
3.13.9 电器识别
3.13.10 跌倒检测
3.13.11 动物识别
3.13.12 二维码识别
3.13.13 发票识别
3.13.14 服装识别
3.13.15 汉字识别
3.13.16 红绿灯识别
3.13.17 虹膜识别
3.13.18 火灾检测
3.13.19 疾病分类
3.13.20 交通标志识别
3.13.21 卡号识别
3.13.22 口罩识别
3.13.23 裂缝识别
3.13.24 目标跟踪
3.13.25 疲劳检测
3.13.26 旗帜识别
3.13.27 青草识别
3.13.28 人脸识别
3.13.29 人民币识别
3.13.30 身份证识别
3.13.31 手势识别
3.13.32 数字字母识别
3.13.33 手掌识别
3.13.34 树叶识别
3.13.35 水果识别
3.13.36 条形码识别
3.13.37 温度检测
3.13.38 瑕疵检测
3.13.39 芯片检测
3.13.40 行为识别
3.13.41 验证码识别
3.13.42 药材识别
3.13.43 硬币识别
3.13.44 邮政编码识别
3.13.45 纸牌识别
3.13.46 指纹识别

3.14 图像修复
3.15 图像压缩
3.16 图像隐写
3.17 图像增强
3.18 图像重建

4 路径规划方面
4.1 旅行商问题(TSP)
4.1.1 单旅行商问题(TSP)
4.1.2 多旅行商问题(MTSP)
4.2 车辆路径问题(VRP)
4.2.1 车辆路径问题(VRP)
4.2.2 带容量的车辆路径问题(CVRP)
4.2.3 带容量+时间窗+距离车辆路径问题(DCTWVRP)
4.2.4 带容量+距离车辆路径问题(DCVRP)
4.2.5 带距离的车辆路径问题(DVRP)
4.2.6 带充电站+时间窗车辆路径问题(ETWVRP)
4.2.3 带多种容量的车辆路径问题(MCVRP)
4.2.4 带距离的多车辆路径问题(MDVRP)
4.2.5 同时取送货的车辆路径问题(SDVRP)
4.2.6 带时间窗+容量的车辆路径问题(TWCVRP)
4.2.6 带时间窗的车辆路径问题(TWVRP)
4.3 多式联运运输问题

4.4 机器人路径规划
4.4.1 避障路径规划
4.4.2 迷宫路径规划
4.4.3 栅格地图路径规划

4.5 配送路径规划
4.5.1 冷链配送路径规划
4.5.2 外卖配送路径规划
4.5.3 口罩配送路径规划
4.5.4 药品配送路径规划
4.5.5 含充电站配送路径规划
4.5.6 连锁超市配送路径规划
4.5.7 车辆协同无人机配送路径规划

4.6 无人机路径规划
4.6.1 飞行器仿真
4.6.2 无人机飞行作业
4.6.3 无人机轨迹跟踪
4.6.4 无人机集群仿真
4.6.5 无人机三维路径规划
4.6.6 无人机编队
4.6.7 无人机协同任务
4.6.8 无人机任务分配

5 语音处理
5.1 语音情感识别
5.2 声源定位
5.3 特征提取
5.4 语音编码
5.5 语音处理
5.6 语音分离
5.7 语音分析
5.8 语音合成
5.9 语音加密
5.10 语音去噪
5.11 语音识别
5.12 语音压缩
5.13 语音隐藏

6 元胞自动机方面
6.1 元胞自动机病毒仿真
6.2 元胞自动机城市规划
6.3 元胞自动机交通流
6.4 元胞自动机气体
6.5 元胞自动机人员疏散
6.6 元胞自动机森林火灾
6.7 元胞自动机生命游戏

7 信号处理方面
7.1 故障信号诊断分析
7.1.1 齿轮损伤识别
7.1.2 异步电机转子断条故障诊断
7.1.3 滚动体内外圈故障诊断分析
7.1.4 电机故障诊断分析
7.1.5 轴承故障诊断分析
7.1.6 齿轮箱故障诊断分析
7.1.7 三相逆变器故障诊断分析
7.1.8 柴油机故障诊断

7.2 雷达通信
7.2.1 FMCW仿真
7.2.2 GPS抗干扰
7.2.3 雷达LFM
7.2.4 雷达MIMO
7.2.5 雷达测角
7.2.6 雷达成像
7.2.7 雷达定位
7.2.8 雷达回波
7.2.9 雷达检测
7.2.10 雷达数字信号处理
7.2.11 雷达通信
7.2.12 雷达相控阵
7.2.13 雷达信号分析
7.2.14 雷达预警
7.2.15 雷达脉冲压缩
7.2.16 天线方向图
7.2.17 雷达杂波仿真

7.3 生物电信号
7.3.1 肌电信号EMG
7.3.2 脑电信号EEG
7.3.3 心电信号ECG
7.3.4 心脏仿真

7.4 通信系统
7.4.1 DOA估计
7.4.2 LEACH协议
7.4.3 编码译码
7.4.4 变分模态分解
7.4.5 超宽带仿真
7.4.6 多径衰落仿真
7.4.7 蜂窝网络
7.4.8 管道泄漏
7.4.9 经验模态分解
7.4.10 滤波器设计
7.4.11 模拟信号传输
7.4.12 模拟信号调制
7.4.13 数字基带信号
7.4.14 数字信道
7.4.15 数字信号处理
7.4.16 数字信号传输
7.4.17 数字信号去噪
7.4.18 水声通信
7.4.19 通信仿真
7.4.20 无线传输
7.4.21 误码率仿真
7.4.22 现代通信
7.4.23 信道估计
7.4.24 信号检测
7.4.25 信号融合
7.4.26 信号识别
7.4.27 压缩感知
7.4.28 噪声仿真
7.4.29 噪声干扰

7.5 无人机通信

7.6 无线传感器定位及布局方面
7.6.1 WSN定位
7.6.2 高度预估
7.6.3 滤波跟踪
7.6.4 目标定位
7.6.4.1 Dv-Hop定位
7.6.4.2 RSSI定位
7.6.4.3 智能算法优化定位
7.6.5 组合导航

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值