💥💥💞💞欢迎来到Matlab仿真科研站博客之家💞💞💥💥
✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:Matlab仿真科研站博客之家
🏆代码获取方式:
💥扫描文章底部QQ二维码💥
⛳️座右铭:行百里者,半于九十;路漫漫其修远兮,吾将上下而求索。
⛄更多Matlab图像处理(仿真科研站版)仿真内容点击👇
Matlab图像处理(仿真科研站版)
⛄一、机器视觉大米粒颗粒识别计数简介
1 机器视觉
机器视觉(Machine Vision)是一种利用计算机视觉技术,对图像或视频进行处理、分析和识别的技术。它可以通过对图像或视频的处理,实现目标检测、目标跟踪、图像分割、图像识别、三维重建等多种功能。机器视觉技术已经在许多领域得到广泛应用,如工业制造、医疗、安防、交通等。
本文将从以下几个方面分析常见的机器视觉技术:
1.1 图像预处理技术
图像预处理技术是机器视觉技术的基础,它可以对图像进行去噪、平滑、锐化等操作,以提高后续处理的效果。常见的图像预处理技术包括:
(1)图像去噪
图像去噪是一种常见的图像预处理技术,它可以去除图像中的噪声,提高图像的清晰度和质量。常见的图像去噪方法有:中值滤波、均值滤波、高斯滤波等。
(2)图像平滑
图像平滑是一种常见的图像预处理技术,它可以使图像变得更加平滑,减少图像中的噪声和细节。常见的图像平滑方法有:均值滤波、高斯滤波、中值滤波等。
(3)图像锐化
图像锐化是一种常见的图像预处理技术,它可以使图像的边缘更加清晰,提高图像的细节和质量。常见的图像锐化方法有:拉普拉斯滤波、Sobel算子、Canny算子等。
1.2 目标检测技术
目标检测是机器视觉技术的核心,它可以自动检测图像或视频中的目标,并标注出目标的位置和大小。常见的目标检测技术包括:
(1)基于特征的方法
基于特征的方法是一种常见的目标检测方法,它通过提取图像中的特征,如颜色、纹理、形状等,来判断图像中是否存在目标。常见的基于特征的方法有:Haar特征检测、HOG特征检测、SURF特征检测等。
(2)基于深度学习的方法
基于深度学习的方法是一种新兴的目标检测方法,它通过训练深度神经网络来实现目标检测。常见的基于深度学习的方法有:R-CNN、Fast R-CNN、Faster R-CNN、YOLO等。
1.3 目标跟踪技术
目标跟踪是指在视频序列中跟踪目标的位置和运动轨迹。常见的目标跟踪技术包括:
(1)基于模板匹配的方法
基于模板匹配的方法是一种常见的目标跟踪方法,它通过将目标的模板与视频帧进行匹配,来实现目标跟踪。常见的基于模板匹配的方法有:NCC匹配、SSD匹配、SAD匹配等。
(2)基于特征点的方法
基于特征点的方法是一种常见的目标跟踪方法,它通过提取图像中的特征点,并跟踪这些特征点的位置和运动轨迹,来实现目标跟踪。常见的基于特征点的方法有:KLT跟踪、SIFT跟踪、SURF跟踪等。
(3)基于深度学习的方法
基于深度学习的方法是一种新兴的目标跟踪方法,它通过训练深度神经网络来实现目标跟踪。常见的基于深度学习的方法有:Siamese网络、MDNet、SiamFC等。
1.4 图像分割技术
图像分割是指将图像分成若干个不同的区域,每个区域具有相似的颜色、纹理、形状等特征。常见的图像分割技术包括:
(1)基于阈值的方法
基于阈值的方法是一种常见的图像分割方法,它通过将图像中的像素值与设定的阈值进行比较,来将图像分成不同的区域。常见的基于阈值的方法有:固定阈值法、自适应阈值法、Otsu阈值法等。
(2)基于边缘的方法
基于边缘的方法是一种常见的图像分割方法,它通过检测图像中的边缘,来将图像分成不同的区域。常见的基于边缘的方法有:Sobel算子、Canny算子等。
(3)基于区域的方法
基于区域的方法是一种常见的图像分割方法,它通过将图像中的像素分成不同的区域,并对每个区域进行分析和处理,来将图像分成不同的区域。常见的基于区域的方法有:区域生长法、分水岭算法等。
1.5 图像识别技术
图像识别是指通过对图像进行处理和分析,来识别图像中的物体、场景、人物等。常见的图像识别技术包括:
(1)基于特征的方法
基于特征的方法是一种常见的图像识别方法,它通过提取图像中的特征,如颜色、纹理、形状等,来识别图像中的物体、场景、人物等。常见的基于特征的方法有:SIFT特征识别、SURF特征识别、HOG特征识别等。
(2)基于深度学习的方法
基于深度学习的方法是一种新兴的图像识别方法,它通过训练深度神经网络来实现图像识别。常见的基于深度学习的方法有:卷积神经网络(CNN)、循环神经网络(RNN)、深度置信网络(DBN)等。
1.6 三维重建技术
三维重建是指通过对图像或视频进行处理和分析,来生成三维模型。常见的三维重建技术包括:
(1)基于结构光的方法
基于结构光的方法是一种常见的三维重建方法,它通过对被测物体进行结构光投影,再通过相机对被测物体进行拍摄,来重建出被测物体的三维模型。常见的基于结构光的方法有:激光三角测量法、投影条纹法、双目视觉法等。
(2)基于立体视觉的方法
基于立体视觉的方法是一种常见的三维重建方法,它通过对被测物体进行双目视觉拍摄,再通过计算机算法对图像进行处理和分析,来重建出被测物体的三维模型。常见的基于立体视觉的方法有:立体匹配法、三角测量法、基于深度学习的方法等。
2 原理
机器视觉大米粒颗粒识别计数是一种利用计算机视觉技术对大米粒颗粒进行自动化识别和计数的方法。其原理主要包括以下几个步骤:
(1)图像采集:使用相机或其他图像采集设备对大米粒颗粒进行拍摄或扫描,获取大米粒颗粒的图像。
(2)图像预处理:对采集到的图像进行预处理,包括去噪、图像增强、灰度化等操作,以提高后续的图像处理效果。
(3)特征提取:通过图像处理算法提取大米粒颗粒的特征信息,例如形状、颜色、纹理等。常用的特征提取方法包括边缘检测、阈值分割、形态学处理等。
(4)分割与定位:根据提取到的特征信息,对图像进行分割和定位,将每个大米粒颗粒从图像中分离出来,并确定其位置。
(5)计数与分类:对分割和定位后的大米粒颗粒进行计数和分类。计数可以通过简单的像素统计或者更复杂的形状匹配等方法实现。分类可以根据大米粒颗粒的特征进行判断,例如根据颜色、大小等进行分类。
(6)结果输出:将计数和分类结果输出,可以以数字形式显示大米粒颗粒的数量,也可以通过图像标记或其他方式示识别结果。
⛄二、部分源代码
function varargout = main(varargin)
% MAIN MATLAB code for main.fig
% MAIN, by itself, creates a new MAIN or raises the existing
% singleton*.
%
% H = MAIN returns the handle to a new MAIN or the handle to
% the existing singleton*.
%
% MAIN(‘CALLBACK’,hObject,eventData,handles,…) calls the local
% function named CALLBACK in MAIN.M with the given input arguments.
%
% MAIN(‘Property’,‘Value’,…) creates a new MAIN or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before main_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to main_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE’s Tools menu. Choose “GUI allows only one
% instance to run (singleton)”.
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help main
% Last Modified by GUIDE v2.5 04-Jun-2024 16:00:35
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct(‘gui_Name’, mfilename, …
‘gui_Singleton’, gui_Singleton, …
‘gui_OpeningFcn’, @main_OpeningFcn, …
‘gui_OutputFcn’, @main_OutputFcn, …
‘gui_LayoutFcn’, [] , …
‘gui_Callback’, []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% global img1;%save img
% — Executes just before main is made visible.
function main_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to main (see VARARGIN)
% Choose default command line output for main
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
img1=imread(‘rice.png’);
axes(handles.axes1);
imshow(img1);title(‘ԭͼ’);
⛄三、运行结果
⛄四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1]林初靠,李伟,陈英.基于机器视觉的葡萄颗粒计数分级方法研究[J].中国科技论文在线.
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用
1.1 PID优化
1.2 VMD优化
1.3 配电网重构
1.4 三维装箱
1.5 微电网优化
1.6 优化布局
1.7 优化参数
1.8 优化成本
1.9 优化充电
1.10 优化调度
1.11 优化电价
1.12 优化发车
1.13 优化分配
1.14 优化覆盖
1.15 优化控制
1.16 优化库存
1.17 优化路由
1.18 优化设计
1.19 优化位置
1.20 优化吸波
1.21 优化选址
1.22 优化运行
1.23 优化指派
1.24 优化组合
1.25 车间调度
1.26 生产调度
1.27 经济调度
1.28 装配线调度
1.29 水库调度
1.30 货位优化
1.31 公交排班优化
1.32 集装箱船配载优化
1.33 水泵组合优化
1.34 医疗资源分配优化
1.35 可视域基站和无人机选址优化
2 机器学习和深度学习分类与预测
2.1 机器学习和深度学习分类
2.1.1 BiLSTM双向长短时记忆神经网络分类
2.1.2 BP神经网络分类
2.1.3 CNN卷积神经网络分类
2.1.4 DBN深度置信网络分类
2.1.5 DELM深度学习极限学习机分类
2.1.6 ELMAN递归神经网络分类
2.1.7 ELM极限学习机分类
2.1.8 GRNN广义回归神经网络分类
2.1.9 GRU门控循环单元分类
2.1.10 KELM混合核极限学习机分类
2.1.11 KNN分类
2.1.12 LSSVM最小二乘法支持向量机分类
2.1.13 LSTM长短时记忆网络分类
2.1.14 MLP全连接神经网络分类
2.1.15 PNN概率神经网络分类
2.1.16 RELM鲁棒极限学习机分类
2.1.17 RF随机森林分类
2.1.18 SCN随机配置网络模型分类
2.1.19 SVM支持向量机分类
2.1.20 XGBOOST分类
2.2 机器学习和深度学习预测
2.2.1 ANFIS自适应模糊神经网络预测
2.2.2 ANN人工神经网络预测
2.2.3 ARMA自回归滑动平均模型预测
2.2.4 BF粒子滤波预测
2.2.5 BiLSTM双向长短时记忆神经网络预测
2.2.6 BLS宽度学习神经网络预测
2.2.7 BP神经网络预测
2.2.8 CNN卷积神经网络预测
2.2.9 DBN深度置信网络预测
2.2.10 DELM深度学习极限学习机预测
2.2.11 DKELM回归预测
2.2.12 ELMAN递归神经网络预测
2.2.13 ELM极限学习机预测
2.2.14 ESN回声状态网络预测
2.2.15 FNN前馈神经网络预测
2.2.16 GMDN预测
2.2.17 GMM高斯混合模型预测
2.2.18 GRNN广义回归神经网络预测
2.2.19 GRU门控循环单元预测
2.2.20 KELM混合核极限学习机预测
2.2.21 LMS最小均方算法预测
2.2.22 LSSVM最小二乘法支持向量机预测
2.2.23 LSTM长短时记忆网络预测
2.2.24 RBF径向基函数神经网络预测
2.2.25 RELM鲁棒极限学习机预测
2.2.26 RF随机森林预测
2.2.27 RNN循环神经网络预测
2.2.28 RVM相关向量机预测
2.2.29 SVM支持向量机预测
2.2.30 TCN时间卷积神经网络预测
2.2.31 XGBoost回归预测
2.2.32 模糊预测
2.2.33 奇异谱分析方法SSA时间序列预测
2.3 机器学习和深度学习实际应用预测
CPI指数预测、PM2.5浓度预测、SOC预测、财务预警预测、产量预测、车位预测、虫情预测、带钢厚度预测、电池健康状态预测、电力负荷预测、房价预测、腐蚀率预测、故障诊断预测、光伏功率预测、轨迹预测、航空发动机寿命预测、汇率预测、混凝土强度预测、加热炉炉温预测、价格预测、交通流预测、居民消费指数预测、空气质量预测、粮食温度预测、气温预测、清水值预测、失业率预测、用电量预测、运输量预测、制造业采购经理指数预测
3 图像处理方面
3.1 图像边缘检测
3.2 图像处理
3.3 图像分割
3.4 图像分类
3.5 图像跟踪
3.6 图像加密解密
3.7 图像检索
3.8 图像配准
3.9 图像拼接
3.10 图像评价
3.11 图像去噪
3.12 图像融合
3.13 图像识别
3.13.1 表盘识别
3.13.2 车道线识别
3.13.3 车辆计数
3.13.4 车辆识别
3.13.5 车牌识别
3.13.6 车位识别
3.13.7 尺寸检测
3.13.8 答题卡识别
3.13.9 电器识别
3.13.10 跌倒检测
3.13.11 动物识别
3.13.12 二维码识别
3.13.13 发票识别
3.13.14 服装识别
3.13.15 汉字识别
3.13.16 红绿灯识别
3.13.17 虹膜识别
3.13.18 火灾检测
3.13.19 疾病分类
3.13.20 交通标志识别
3.13.21 卡号识别
3.13.22 口罩识别
3.13.23 裂缝识别
3.13.24 目标跟踪
3.13.25 疲劳检测
3.13.26 旗帜识别
3.13.27 青草识别
3.13.28 人脸识别
3.13.29 人民币识别
3.13.30 身份证识别
3.13.31 手势识别
3.13.32 数字字母识别
3.13.33 手掌识别
3.13.34 树叶识别
3.13.35 水果识别
3.13.36 条形码识别
3.13.37 温度检测
3.13.38 瑕疵检测
3.13.39 芯片检测
3.13.40 行为识别
3.13.41 验证码识别
3.13.42 药材识别
3.13.43 硬币识别
3.13.44 邮政编码识别
3.13.45 纸牌识别
3.13.46 指纹识别
3.14 图像修复
3.15 图像压缩
3.16 图像隐写
3.17 图像增强
3.18 图像重建
4 路径规划方面
4.1 旅行商问题(TSP)
4.1.1 单旅行商问题(TSP)
4.1.2 多旅行商问题(MTSP)
4.2 车辆路径问题(VRP)
4.2.1 车辆路径问题(VRP)
4.2.2 带容量的车辆路径问题(CVRP)
4.2.3 带容量+时间窗+距离车辆路径问题(DCTWVRP)
4.2.4 带容量+距离车辆路径问题(DCVRP)
4.2.5 带距离的车辆路径问题(DVRP)
4.2.6 带充电站+时间窗车辆路径问题(ETWVRP)
4.2.3 带多种容量的车辆路径问题(MCVRP)
4.2.4 带距离的多车辆路径问题(MDVRP)
4.2.5 同时取送货的车辆路径问题(SDVRP)
4.2.6 带时间窗+容量的车辆路径问题(TWCVRP)
4.2.6 带时间窗的车辆路径问题(TWVRP)
4.3 多式联运运输问题
4.4 机器人路径规划
4.4.1 避障路径规划
4.4.2 迷宫路径规划
4.4.3 栅格地图路径规划
4.5 配送路径规划
4.5.1 冷链配送路径规划
4.5.2 外卖配送路径规划
4.5.3 口罩配送路径规划
4.5.4 药品配送路径规划
4.5.5 含充电站配送路径规划
4.5.6 连锁超市配送路径规划
4.5.7 车辆协同无人机配送路径规划
4.6 无人机路径规划
4.6.1 飞行器仿真
4.6.2 无人机飞行作业
4.6.3 无人机轨迹跟踪
4.6.4 无人机集群仿真
4.6.5 无人机三维路径规划
4.6.6 无人机编队
4.6.7 无人机协同任务
4.6.8 无人机任务分配
5 语音处理
5.1 语音情感识别
5.2 声源定位
5.3 特征提取
5.4 语音编码
5.5 语音处理
5.6 语音分离
5.7 语音分析
5.8 语音合成
5.9 语音加密
5.10 语音去噪
5.11 语音识别
5.12 语音压缩
5.13 语音隐藏
6 元胞自动机方面
6.1 元胞自动机病毒仿真
6.2 元胞自动机城市规划
6.3 元胞自动机交通流
6.4 元胞自动机气体
6.5 元胞自动机人员疏散
6.6 元胞自动机森林火灾
6.7 元胞自动机生命游戏
7 信号处理方面
7.1 故障信号诊断分析
7.1.1 齿轮损伤识别
7.1.2 异步电机转子断条故障诊断
7.1.3 滚动体内外圈故障诊断分析
7.1.4 电机故障诊断分析
7.1.5 轴承故障诊断分析
7.1.6 齿轮箱故障诊断分析
7.1.7 三相逆变器故障诊断分析
7.1.8 柴油机故障诊断
7.2 雷达通信
7.2.1 FMCW仿真
7.2.2 GPS抗干扰
7.2.3 雷达LFM
7.2.4 雷达MIMO
7.2.5 雷达测角
7.2.6 雷达成像
7.2.7 雷达定位
7.2.8 雷达回波
7.2.9 雷达检测
7.2.10 雷达数字信号处理
7.2.11 雷达通信
7.2.12 雷达相控阵
7.2.13 雷达信号分析
7.2.14 雷达预警
7.2.15 雷达脉冲压缩
7.2.16 天线方向图
7.2.17 雷达杂波仿真
7.3 生物电信号
7.3.1 肌电信号EMG
7.3.2 脑电信号EEG
7.3.3 心电信号ECG
7.3.4 心脏仿真
7.4 通信系统
7.4.1 DOA估计
7.4.2 LEACH协议
7.4.3 编码译码
7.4.4 变分模态分解
7.4.5 超宽带仿真
7.4.6 多径衰落仿真
7.4.7 蜂窝网络
7.4.8 管道泄漏
7.4.9 经验模态分解
7.4.10 滤波器设计
7.4.11 模拟信号传输
7.4.12 模拟信号调制
7.4.13 数字基带信号
7.4.14 数字信道
7.4.15 数字信号处理
7.4.16 数字信号传输
7.4.17 数字信号去噪
7.4.18 水声通信
7.4.19 通信仿真
7.4.20 无线传输
7.4.21 误码率仿真
7.4.22 现代通信
7.4.23 信道估计
7.4.24 信号检测
7.4.25 信号融合
7.4.26 信号识别
7.4.27 压缩感知
7.4.28 噪声仿真
7.4.29 噪声干扰
7.5 无人机通信
7.6 无线传感器定位及布局方面
7.6.1 WSN定位
7.6.2 高度预估
7.6.3 滤波跟踪
7.6.4 目标定位
7.6.4.1 Dv-Hop定位
7.6.4.2 RSSI定位
7.6.4.3 智能算法优化定位
7.6.5 组合导航
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合