SPSS多元统计分析【009期】

本文详细介绍了SPSS中的因子分析,这是一种用于在多个变量中提取共性因子的统计技术,旨在减少变量数目并保留信息。因子分析分为R型和Q型,能够再现变量之间的内在联系。文中提到了因子分析的基本原理,并推荐了多个SPSS分析相关的参考书籍。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

**博主提示:订阅本专栏,可免费获得此专栏参考文献电子版资料**

多元统计分析是从经典统计学中发展起来的一个分支,是一种综合分析方法,它能够在多个对象和多个指标互相关联的情况下分析它们的统计规律,很适合农业科学研究的特点。其主要内容包括多元正态分布及其抽样分布、多元正态总体的均值向量和协方差阵的假设检验、多元方差分析、直线回归与相关、多元线性回归与相关(Ⅰ)和(Ⅱ)、主成分分析与因子分析、判别分析与聚类分析、Shannon信息量及其应用(简称多元分析) 。当总体的分布是多维(多元) 概率分
布时,处理该总体的数理统计理论和方法,是数理统计学中的一个重要的分支学科。

9.1 因子分析
因子分析是指研究从变量群中提取共性因子的统计技术。最早由英国心理学家C.E.斯皮尔曼提出。他发现学生的各科成绩之间存在着一定的相关性,一科成绩好的学生,往往其他各科成绩也比较好,从而推想是否存在某些潜在的共性因子,或称某些一般智力条件影响着学生的学习成绩。因子分析可在许多变量中找出隐藏的具有代表性的因子。将相同本质的变量归入一个因子,可减少变量的数目,还可检验变量间关系的假设。

9.1.1因子分析的基本原理
1 方法概述

人们在研究实际问题时,往往希望尽可能多地收集相关变量,以期望对问题有比较全面、完整的把握和认识。为解决这些问题,最简单和最直接的解决方案是减少变量数目,但这必然又会导致信息丢失或不完整等问题。为此,人们希望探索一种有效的解决方法,它既能减少参与数据分析的变量个数,同时也不会造成统计信息的大量浪费和丢失。
因子分析就是在尽可能不损失信息或者少损失信息的情况下,将多个变量减少为少数几个因子的方法。这几个因子可以高度概括大量数据中的信息,这样,既减少了变量个数,又同样能再现变量之间的内在联系。

2 基本原理
通常针对变量作因子分析,称为R型因子分析;另一种对样品作因子分析,称为Q型因子分析。这两种分析方法有许多相似之处。
R型因子分析数学模型是:
设原有p个变量且每个变量(或经标准化处理后)的均值为0,标准差为1。现将每个原有变量用k个因子的线性组合来表示,即

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值