
【数模应用】MATLAB基础知识详讲300篇(持续更新中)
文章平均质量分 94
从基础讲起,适合小白入门。包含MATLAB的常用操作,各种函数的使用,图形绘制,MATLAB使用过程中的小技巧等等,配合高级篇专栏【数学建模应用】算法实战案例精讲300篇(持续更新ing)一起学习效果更好
林聪木
巧笑倩兮,美目盼兮,素以为绚兮
展开
-
数模应用-MATLAB基础知识精讲系列文章目录介绍(持续补充ing)
本专栏以MATLAB基础知识讲解为主,相信有很多刚入门的理工科小伙伴,对于MATLAB这个软件还不是很熟悉,在这里给各位学弟学妹们一个小建议:大学期间数模竞赛如果有机会尽量去参加,一方面是对自己所学知识的一次检验,另外,如果能在比赛中获得好名次的话,对你之后的求职升学等方面都会有很大助力!本专栏的进阶版参见博主的这个专栏,里面详细列举了各类算法的算法原理、应用案例及多种编程语言的代码实现,配合基础篇一起学习能达到事半功倍的效果哦。原创 2022-10-08 09:03:23 · 876 阅读 · 0 评论 -
MATLAB基础应用精讲-【数模应用】多层线性模型HLM(附MATLAB、python和R语言代码实现)
层次线性模型(HLM),也称为分层线性模型或多水平线性模型,是一种多元统计分析方法,适用于处理具有层次结构的数据。HLM能够同时考虑同一层次和不同层次间的数据变异,解决了传统回归模型在处理嵌套数据时随机误差独立性假设难以满足的问题。HLM通过将误差分解为个体间和群体间的差异,提供了更准确的标准误估计和更有效的区间估计。在教育、心理学等领域,HLM被广泛应用于分析不同层次变量对因变量的影响,如学校环境对学生成绩的影响。HLM的优点包括能够分析多水平协方差、探讨不同层次对因变量的影响程度、以及分析重复测量数据等原创 2025-05-21 00:30:00 · 20 阅读 · 0 评论 -
MATLAB基础应用精讲-【基础知识篇】发布和共享 MATLAB 代码
发布MATLAB® 代码文件 (.m) 可创建包括您的代码、注释和输出的格式化文档。发布代码的常见原因是与其他人共享文档以用于教学或演示,或者生成您代码的可读外部文档。原创 2025-04-26 00:30:00 · 274 阅读 · 0 评论 -
MATLAB基础应用精讲-【基础知识篇】Matlab: 自动计算属性的默认值
当创建图形时,MATLAB® 会为这一特定图形适当设置某些属性值。这些属性,如控制坐标轴范围和图窗渲染器的属性,具有相关联的模式属性。这一模式属性确定MATLAB是否计算此属性值(模式为 auto)或属性是否使用指定值(模式为 manual)。通过以下方式控制属性定义的各个方面:分别为每个属性指定默认值,参考默认属性值。在类构造函数中为属性赋值,参考在构造函数中为属性赋值。用常量值定义属性,参考Named Value。按代码块为属性特性赋值,参考属性特性。原创 2025-04-22 00:30:00 · 37 阅读 · 0 评论 -
MATLAB基础应用精讲-【基础知识篇】比较日期时间
在MATLAB中,处理日期和时间通常涉及使用datetime类。datetime类是MATLAB中用于表示日期和时间的首选方式,它提供了灵活的方法来进行日期时间的比较、计算和格式化。原创 2025-04-18 00:30:00 · 49 阅读 · 0 评论 -
MATLAB基础应用精讲-【数模应用】使用 TCP/IP 接口进行数据的写入和读取(附MATLAB和python代码实现)
无线通信模块是一种能够在无线网络中进行数据传输的设备。它通常集成了网络接口层、传输层和应用层等多个功能模块,以支持TCP/IP等网络通信协议。TCP/IP协议族是互联网的基础通信协议,它定义了设备间如何进行数据传输的规则和标准。通过TCP/IP协议,无线通信模块可以与PC端等设备进行稳定、可靠的数据传输。无线通信模块可以通过TCP/IP协议向PC端传送数据。无线通信模块实现TCP/IP协议向PC端传送数据的过程主要包括:首先,当需要传输数据时,会将数据添加TCP/IP首部,然后通过无线网络发送出去。原创 2025-04-17 10:51:19 · 166 阅读 · 0 评论 -
MATLAB基础应用精讲-【数模应用】自回归模型(Autoregressive Model,AR)(附MATLAB、R语言和python代码实现)
自回归模型(Autoregressive Model,简称 AR 模型)是一种统计模型,用于分析和预测时间序列数据。以下是自回归模型的一些基本概念:1. 时间序列数据:时间序列是按照时间顺序排列的数据点集合,例如股票价格、气温记录或销售额等。2. 自回归:自回归模型的核心思想是使用时间序列过去的值来预测未来的值。"自回归"意味着模型使用自身的过去值作为预测未来值的依据。3. 滞后(Lag):在自回归模型中,时间序列的过去值被称为滞后值。原创 2025-04-11 00:30:00 · 66 阅读 · 0 评论 -
MATLAB基础应用精讲-【数模应用】卡尔曼滤波模拟匀加速直线运动(附MATLAB和python代码实现)
卡尔曼滤波使用关联的观测数据来估计目标的状态,并预测目标的未来位置和速度等信息。目标跟踪过程中,测量数据通常会受到各种噪声的影响,例如传感器噪声、环境干扰等。卡尔曼滤波器可以通过对测量数据和系统模型的加权处理来减少噪声的影响,提供更准确的目标状态估计。卡尔曼滤波用来估计带噪信号中隐藏的真实信息。卡尔曼滤波是一种利用线性状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。由于观测数据中包括系统中的噪声和干扰的影响,所以最优估计也可看作是滤波过程。原创 2025-04-12 00:30:00 · 50 阅读 · 0 评论 -
MATLAB基础应用精讲-【数模应用】迭代扩展卡尔曼滤波算法(附MATLAB、python和C++代码实现)
卡尔曼滤波(Kalman filtering)是一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。由于观测数据中包括系统中的噪声和干扰的影响,所以最优估计也可看作是滤波过程。数据滤波是去除噪声还原真实数据的一种数据处理技术,Kalman滤波在测量方差已知的情况下能够从一系列存在测量噪声的数据中,估计动态系统的状态。原创 2025-04-07 00:30:00 · 84 阅读 · 0 评论 -
MATLAB基础应用精讲-【数模应用】利用散点数据进行函数曲线拟合(附C++、python、MATLAB和R语言代码)
1. 在散点图中,右键点击数据点,选择“格式数据系列”。2. 选择“趋势线”,然后在选项中自定义趋势线的类型和格式。3. 你可以通过调整趋势线的选项来优化拟合效果,例如改变多项式的次数。原创 2025-04-08 00:30:00 · 56 阅读 · 0 评论 -
MATLAB基础应用精讲-【数模应用】多无人机目标搜索与围捕(附MATLAB、C++和python代码实现)
多架无人机组成无人机集群可以协同完成任务,是未来无人机的发展方向。组成无人机集群的多架无人机通过机间链路互相通信实现协作,可以迅速准确地执行路径规划、协同侦察、协同感知和协同攻击等复杂任务。为实现无人机集群协作的诱人前景,国内外都积极开展了相关研究工作。美国方面,美国国防预先研究计划局(DARPA)于2015年推出“小精灵”项目,计划研制具备自组织和智能协同能力的无人机蜂群系统。原创 2025-03-20 00:30:00 · 88 阅读 · 0 评论 -
MATLAB基础应用精讲-【数模应用】基于动态扰动和惯性权重的改进布谷鸟算法求解目标问题(附MATLAB、C++和python代码实现)
单目标优化是通过改变一组自变量来最小化或最大化一个目标函数的问题。在实际应用中,我们经常需要解决单目标优化问题,例如参数优化、函数逼近等。布谷鸟算法(Cuckoo Search Algorithm)是一种启发式优化算法,模拟了布谷鸟的寄生习性以及布谷鸟蛋的扩散策略。它具有全局搜索能力和较好的收敛性,因此被广泛应用于优化问题。然而,传统的布谷鸟算法存在着一些问题,如局部最优解陷阱和收敛速度较慢等。为了提高布谷鸟算法的性能,本文引入了多阶段动态扰动和动态惯性权重的策略。原创 2025-03-21 00:30:00 · 80 阅读 · 0 评论 -
MATLAB基础应用精讲-【数模应用】模拟退火算法求解全局最大值最小值问题(附C++、MATLAB和python代码实现)
模拟退火算法(Simulated Annealing,SA)的思想最早由Metropolis等人于1953年提出:Kirkpatrick于1983年第一次使用模拟退火算法求解组合最优化问题。模拟退火算法是一种基于MonteCarlo迭代求解策略的随机寻优算法, 其出发点是基于物理中固体物质的退火过程与一般组合优化问题之间的相似性。其目的在于为具有NP(Non-deterministic Polynomial) 复杂性的问题提供有效的近似求解算法,它克服了其他优化过程容易陷入局部极小的缺陷和对初值的依赖性。原创 2025-03-22 00:30:00 · 71 阅读 · 0 评论 -
MATLAB基础应用精讲-【数模应用】基于 PRISM 模型的无人机目标搜索与避碰(附MATLAB、C++和python代码实现)
随着无人机的发展,无人机避障问题一直是无人机应用中的热点和难点问题。在 对避障问题的研究与探索中, 形成了许多比较成熟的理论方法,例如可视图法、栅格 法与人工势场法等等,其中最著名的是向量场直方图方法, 也就是VFH算法。于是 采用VFH算法和路径规划相结合的方法实现无人机沿着预定路径前进中的避障问题。采用激 光雷达来获取机器人周围环境信息,并用仿真验证所做的避障设计是可以实现 的。原创 2025-03-24 00:30:00 · 81 阅读 · 0 评论 -
MATLAB基础应用精讲-【数模应用】混合专家模型(MoE)(二)
混合专家模型(MixtureofExperts:MoE)的思想可以追溯到集成学习,集成学习是通过训练多个模型(基学习器)来解决同一问题,并且将它们的预测结果简单组合(例如投票或平均)。集成学习的主要目标是通过减少过拟合,提高泛化能力,以提高预测性能。常见的集成学习方法包括Bagging,Boosting和Stacking。原创 2025-03-03 00:30:00 · 293 阅读 · 0 评论 -
MATLAB基础应用精讲-【数模应用】混合专家模型(MoE)
混合专家模型(MoE,Mixture of experts)是一种机器学习方法,它将人工智能(AI)模型划分为单独的子网络(或“专家”),每个子网络专攻输入数据的一个子集,以共同执行任务。混合专家模型使大规模模型,甚至那些包含数十亿个参数的模型,在预训练期间大大降低计算成本,并在推理时间内实现更快的性能。一般来说,它通过选择性地激活特定任务所需的特定专家来实现这种效率,而不是为每个任务激活整个神经网络。与稠密模型相比, 预训练速度更快与具有相同参数数量的模型相比,具有更快的 推理速度。原创 2025-03-01 00:30:00 · 119 阅读 · 0 评论 -
MATLAB基础应用精讲-【数模应用】牛顿迭代法(附MATLAB、C++、R语言和python代码实现)
Newton-Raphson方法,通常简称为N-R法,是一种用于求解非线性方程组的数值技术。这种方法基于泰勒展开式的线性近似,通过逐次逼近的方式找到方程组的解。这种方法之所以广受欢迎,是因为它通常能够快速收敛到解,并且计算量相对较小。在应用Newton-Raphson方法时,首先需要对非线性方程进行一次泰勒展开,并只保留线性项。这样做的目的是简化复杂的非线性问题,使之转化为一个线性问题,从而更容易求解。经过简化后的线性方程组可以使用标准的线性代数方法求解。原创 2025-02-26 10:20:50 · 248 阅读 · 0 评论 -
MATLAB基础应用精讲-【数模应用】肤色模型与形态学图像处理方法(附MATLAB、C++和python代码实现)
训练数据库的不完整本来就会使分割出来的肤色块比较琐碎,而背景块的剔除会造成肤色块更加琐碎,最终提取的肤色块效果一定是小块小块并且支离破碎的,这样的肤色分割在后期手势或人脸跟踪中根本没法用,所以就有了块原点能量的需求,相比盲目的形态学计算效果分割得更加完整和精确,因为单一得形态学计算没有考虑肤色和背景噪声的关系。(3)检测肤色块 查找初始等高线灰度图像的等高线,并获得面积最大登高线,同时在肤色掩码彩色图像上用检测到的所有肤色块(红色块,分割的结果包括背景肤色噪声)覆盖肤色块。原创 2025-03-03 00:30:00 · 203 阅读 · 0 评论 -
MATLAB基础应用精讲-【数模应用】模糊 c 均值 (FCM)(二)(附MATLAB和python代码实现)
聚类分析是多元统计分析的一种,也是无监督模式识别的一个重要分支,在模式分类、图像处理和模糊规则处理等众多领域中获得最广泛的应用。它把一个没有类别标记的样本按照某种准则划分为若干子集,使相似的样本尽可能归于一类,而把不相似的样本划分到不同的类中。硬聚类把每个待识别的对象严格的划分某类中,具有非此即彼的性质,而模糊聚类建立了样本对类别的不确定描述,更能客观的反应客观世界,从而成为聚类分析的主流。原创 2025-02-21 00:30:00 · 58 阅读 · 0 评论 -
MATLAB基础应用精讲-【数模应用】空间插值(附MATLAB和python代码实现)
地统计的最初用途是指对“地球”的统计,如地理和地质方面的统计。现在,地统计广泛用于许多领域并且构成了空间统计的一个分支。最初,在空间统计中,地统计等同于克里金法,克里金法是统计形式的插值。当前定义已经扩展到不仅包括克里金方法,还包括许多其他插值方法,如在空间插值的确定性方法中介绍的确定性方法。Geostatistical Analyst 是这一广泛定义的地统计的实现形式。地统计的基本特点之一是,所研究的现象可在研究区域内的任何位置获取值(不一定为测得的值);例如某区域中的氮含量,或者大气中的臭氧浓度。原创 2025-02-23 00:30:00 · 130 阅读 · 0 评论 -
MATLAB基础应用精讲-【数模应用】行程编码(RLE)(附Java、C++和python代码实现)
游程编码,又称为“运行长度编码”或“行程编码”,是一种统计编码方式,属于无损压缩编码方法。它特别适用于二值图象的压缩。行程编码的核心理念在于,用一个符号值或串长来替代连续具有相同值的符号,这些符号连续出现形成了一段“行程”,因此得名。例如,对于一串数字序列5555557777733322221111111,行程编码可以将其转换为(5,6)(7,5)(3,3)(2,4)(1,7),这种方式大大减少了数据的存储空间。原创 2025-02-20 00:30:00 · 79 阅读 · 0 评论 -
MATLAB基础应用精讲-【数模应用】模糊 c 均值 (FCM)(附MATLAB和python代码实现)
模糊C均值聚类算法是硬C均值聚类算法的一种扩展,它通过引入模糊隶属度来允许数据点以一定的概率属于多个聚类,而不是像硬聚类那样将数据点硬性分配给单一的聚类。这种模糊性在处理具有重叠或模糊边界的数据集时特别有用。模糊C均值聚类算法通过迭代优化一个目标函数来工作,该目标函数通常是聚类内误差平方和的一个模糊版本。在每次迭代中,算法会根据当前的聚类中心更新每个数据点的模糊隶属度,然后根据更新后的隶属度重新计算聚类中心。这个过程一直重复,直到满足某个停止准则,如达到最大迭代次数或聚类中心的变化小于某个阈值。原创 2025-02-18 00:30:00 · 66 阅读 · 0 评论 -
MATLAB基础应用精讲-【数模应用】动态窗口法(DWA)及其算法变种(附matlab、C++和python代码实现)
动态窗口方法(Dynamic Window Approach,DWA)是一种常用的避障规划方法,其目标是在速度空间中搜索机器人最优控制速度,避免碰撞同时快速到达目标点。DWA将搜索空间减小到在动态约束下可达的速度,从而融入机器人的动力学特性。速度空间假设每个时间间隔内速度保持不变,即加速度为零。这种方法缩小了搜索空间,便于处理,并且每次时间间隔后都会重复搜索。在不给出新命令的情况下,速度将自动保持不变,生成的轨迹需与障碍物不相交。原创 2025-02-16 00:30:00 · 110 阅读 · 0 评论 -
MATLAB基础应用精讲-【数模应用】灰度图像增强(附MATLAB、C++和python代码实现)
灰度增强,一种图像增强技术。按一定变换关系逐点地改变原图中每一个像素的灰度值,以改善图像视觉效果。属图像增强的点运算。其方法分为灰度变换和直方图修正两类。增强效果以人的主观感觉为准,常需要通过人机交互来取得好的增强效果。由于受到环境,光线等的影响,拍摄的照片清晰度和对比度比较低,不能够突出图像中的重点。另外,对于小样本图像数据集往往采用图像增强的方法扩充数据量增加实验的合理性,图像增强算法能够提高图像整体和局部的对比度,突出图像的细节信息,使图像更符合人眼的视觉特性且易于机器识别。原创 2025-02-12 00:30:00 · 106 阅读 · 0 评论 -
MATLAB基础应用精讲-【数模应用】DTMF电话模拟(附MATLAB代码实现)
双音多频 DTMF(Dual Tone Multi Frequency),双音多频,由高频群和低频群组成,高低频群各包含4个频率。一个高频信号和一个低频信号叠加组成一个组合信号,代表一个数字。DTMF信令有16个编码。利用DTMF信令可选择呼叫相应的对讲机。双音多频信号(DTMF),电话系统中电话机与交换机之间的一种用户信令,通常用于发送被叫号码。在使用双音多频信号之前,电话系统中使用一连串的断续脉冲来传送被叫号码,称为脉冲拨号。脉冲拨号需要电信局中的操作员手工完成长途接续。原创 2025-02-10 00:30:00 · 126 阅读 · 0 评论 -
MATLAB基础应用精讲-【数模应用】基于BP神经网络的交通流量预测(附MATLAB和python代码实现)
随着城市化进程的加速和机动车保有量的持续增长,交通拥堵日益严重,成为制约城市发展和社会进步的瓶颈。智能交通系统(Intelligent Transportation Systems, ITS)的兴起为解决交通问题提供了新的思路,而准确的交通流量预测是ITS中至关重要的组成部分。短时交通流量预测,即对未来几分钟至数小时内的交通流量进行预测,是交通控制和诱导策略制定的重要依据。原创 2025-02-08 00:30:00 · 99 阅读 · 0 评论 -
MATLAB基础应用精讲-【数模应用】花朵授粉算法(FPA)(附MATLAB和python代码实现)
花朵授粉算法( Flower Pollination Algorithm,FPA)是由英国剑桥大学学者Yang于2012年提出的,其基本思想来源于对自然界花朵自花授粉、异花授粉的模拟,是一种新的元启发式群智能随机优化技术。算法中为了简便计算,假设每个植物仅有一朵花,每朵花只有一个配子,我们可以认为每一个配子都是解空间中的一个候选解。Yang通过对花朵授粉的研究,抽象出以下四大规则:1) 生物异花授粉被考虑为算法的全局探测行为,并由传粉者通过Levy飞行的机制实现全局授粉;原创 2025-02-11 00:30:00 · 84 阅读 · 0 评论 -
MATLAB基础应用精讲-【数模应用】最大熵模型(附MATLAB、R语言和python代码实现)
最大熵是一种选择随机变量统计特性最符合客观情况的准则,也称为最大信息原理。随机量的概率分布是很难测定的,通常只能测得其各种均值(如数学期望、方差等)或已知某些限定条件下的值(如峰值、取值个数等)。符合这些值的分布可以有多种,其中有一种分布的熵最大,选用这种具有最大熵的分布作为该随机变量的分布,是一种有效的处理方法和准则。最大熵原理是一种选择随机变量统计特性最符合客观情况的准则,也称为最大信息原理。原创 2025-02-09 00:30:00 · 120 阅读 · 0 评论 -
MATLAB基础应用精讲-【数模应用】FIFO存储器设计
FIFO( First Input First Output)简单说就是指先进先出。由于微电子技术的飞速发展,新一代FIFO芯片容量越来越大,体积越来越小,价格越来越便宜。作为一种新型大规模集成电路,FIFO芯片以其灵活、方便、高效的特性,逐渐在高速数据采集、高速数据处理、高速数据传输以及多机处理系统中得到越来越广泛的应用。在系统设计中,以增加数据传输率、处理大量数据流、匹配具有不同传输率的系统为目的而广泛使用FIFO存储器,从而提高了系统性能。原创 2025-02-03 00:30:00 · 97 阅读 · 0 评论 -
MATLAB基础应用精讲-【数模应用】TEA算法及其变种(附Java和C++代码实现)
TEA(Tiny Encryption Algorithm)是一种简单而有效的对称加密算法,由David Wheeler和Roger Needham于1994年提出。它以其简明的设计和高效性在密码学应用中备受关注。TEA使用64位的数据块和128位的密钥,适合嵌入式系统和资源受限的环境。原创 2025-02-08 00:30:00 · 56 阅读 · 0 评论 -
MATLAB基础应用精讲-【数模应用】BP神经网络财务预警(附MATLAB和python代码实现)
公司财务预警系统是为了防止公司财务系统运行偏离预期目标而建立的报警系统,具有针对性和预测性等特点。它通过公司的各项指标综合评价并预测公司财务状况、发展趋势和变化,为决策者科学决策提供支持。财务危机预警指标体系中的指标可分为表内信息指标、盈利能力指标、偿还能力指标、成长能力指标、线性流量指标和表外信息指标六大指标,每项大指标又分为若干小指标,如盈利 能力指标又分为净资产收益率、总资产报酬率、每股收益、主营业务利润率和成本费用利润率等。原创 2025-02-03 00:30:00 · 133 阅读 · 0 评论 -
MATLAB基础应用精讲-【数模应用】梯度直方图(HOG)(附C++和python代码实现)(二)
梯度直方图特征(HOG) 是一种对图像局部重叠区域的密集型描述符, 它通过计算局部区域的梯度方向直方图来构成特征。Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功。需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM的思路为主。原创 2025-02-02 12:05:05 · 177 阅读 · 0 评论 -
MATLAB基础应用精讲-【数模应用】梯度直方图(HOG)(附MATLAB和python代码实现)
特征描述子一张图片或者一个图片块的一种表示,通过提取有用信息并扔掉多余的信息来简化图像。通常,特征描述子将一张大小为width×height×3 (通道数)的图片化成一个长度为n的特征向量/数组。以HOG特征为例,输入图像的大小是64×128×3,输出是一个长度为3780的特征向量。注意一点,HOG特征也可以是其它大小,但这里我使用原文献中使用的大小,这样你可以更容易地通过一个具体的例子来理解这个概念。上面这些听起来不错,但是对于一张图片的信息,哪些是有用的哪些是冗余的呢?原创 2025-01-27 00:30:00 · 97 阅读 · 0 评论 -
MATLAB基础应用精讲-【数模应用】DBSCAN算法(附MATLAB、R语言和python代码实现)(二)
DBSCAN,全称为“基于密度的空间聚类的应用”,由Martin Ester, Hans-Peter Kriegel, Jörg Sander和Xiaowei Xu于1996年提出。不同于K-means等划分聚类算法,DBSCAN不需要事先指定簇的数量,它能够根据数据本身的特性,自动发现簇的数量。更重要的是,DBSCAN能识别任意形状的簇,同时将不属于任何簇的点标识为噪声,这对于现实世界中充满噪声和非线性分布的数据集尤为重要。例如,考虑一个电商平台的用户购买行为数据集。原创 2025-01-28 00:30:00 · 120 阅读 · 0 评论 -
MATLAB基础应用精讲-【数模应用】DBSCAN算法(附MATLAB和python代码实现)
目录前言几个高频面试题目DBSCAN和传统聚类算法对比算法原理 发展历程主要事件发展分析什么是DBSCANDBSCAN算法的聚类过程DBSCAN算法的样本点组成几个相关的概念:算法思想DBSCAN算法优缺点和改进2.1 DBSCAN算法优缺点2.2 DBSCAN算法改进算法流程伪代码算法参数eps(邻域半径)举例说明:如何选择:minPts(最小点数)举例说明:如何选择:参数调优的技巧实战技巧:噪声数据与异常值DBSCAN算法处理噪声数据与异常值的优势优缺点 优点:缺点:DBSCAN算法在处理噪声数据与异常原创 2025-01-29 00:15:00 · 179 阅读 · 0 评论 -
MATLAB基础应用精讲-【图像处理】超像素分割(附MATLAB、python和C++代码实现)
在计算机视觉领域,图像分割(Segmentation)指的是将数字图像细分为多个图像子区域(像素的集合)(也被称作超像素)的过程。超像素由一系列位置相邻且颜色、亮度、纹理等特征相似的像素点组成的小区域。这些小区域大多保留了进一步进行图像分割的有效信息,且一般不会破坏图像中物体的边界信息。图像分割的结果是图像上子区域的集合(这些子区域的全体覆盖了整个图像),或是从图像中提取的轮廓线的集合(例如边缘检测)。一个子区域中的每个像素在某种特性的度量下或是由计算得出的特性都是相似的,例如颜色、亮度、纹理。原创 2025-01-30 00:30:00 · 136 阅读 · 0 评论 -
MATLAB基础应用精讲-【数模应用】边缘检测算子性能评价(附MATLAB和python代码实现)
图像边缘是指图像中灰度值发生急剧变化的地方,这些变化通常对应于图像中物体的轮廓、边界或纹理的突变处。在数字图像处理中,边缘是图像的一个重要特征,它包含了关于物体形状、位置和大小等关键信息。边缘检测是数字图像处理和计算机视觉中的基本问题,边缘检测的目的是标识数字图像中亮度变化明显的点。图像属性中的显著变化通常反映了属性的重要事件和变化。这些包括:深度上的不连续、表面方向不连续、物质属性变化和场景照明变化。边缘检测是数字图像处理和计算机视觉中,尤其是特征提取中的一个研究领域。原创 2025-01-31 00:30:00 · 126 阅读 · 0 评论 -
MATLAB基础应用精讲-【数模应用】LSB算法实现信息隐藏(附MATLAB和python代码实现)
LSB算法是一种利用数字信号最低有效位进行信息隐藏的技术。其基本原理是将待隐藏的信息(如文本、图像等)转换为二进制数据,并将其嵌入到载体信号(如音频、图像等)的最低有效位中。由于人耳或人眼对信号的低有效位变化不敏感,因此嵌入的信息不会对载体信号的感知质量造成明显的劣化。LSB算法的优点在于其易于实现、隐蔽性强,并且对载体信号的格式和内容没有特殊要求。然而,LSB算法也存在一些缺点,例如嵌入容量有限、易受攻击等。LSB全称为 least significant bit,是最低有效位的意思。原创 2025-02-01 00:30:00 · 86 阅读 · 0 评论 -
MATLAB基础应用精讲-【数模应用】卡尔曼滤波及其变种算法(附MATLAB、Java、C++、python和C语言代码实现)
在许多工程实践中,往往不能直接得到所需要的状态变量的真实值。例如雷达在探测目标时,可以通过回波信号等计算出目标的距离、速度和角度等信息。但雷达探测过程中会存在干扰(系统噪声、地杂波和非目标信号等)的问题,这些干扰会导致回波信号中夹杂有随机噪声。我们要在有随机噪声的回波信号中分离目标的运动状态量,准确的得到这个状态量往往是不可能的,只能根据观测信号估计这些状态变量。卡尔曼滤波就是这种通过估计或预测降低噪声影响的一种好的方法。特别是在线性系统中,卡尔曼滤波是最优的滤波算法。原创 2025-01-27 00:30:00 · 155 阅读 · 0 评论 -
MATLAB基础应用精讲-【数模应用】迭代扩展卡尔曼滤波(IEKF)(附MATLAB、python和C语言代码实现)
卡尔曼滤波思想由 kalman于 1960 年提出,该方法:假设状态噪声与观测噪声符合高斯分布;通过观测数据对状态量进行最优估计。其实质是计算最大后验概率问题,只能应用于线性系统。原创 2025-01-28 00:30:00 · 124 阅读 · 0 评论