时序预测 | MATLAB实现SSA-ELM麻雀算法优化极限学习机时间序列预测

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,求助可私信。

🔥内容介绍

极限学习机 (ELM) 作为一种新型的单隐层前馈神经网络 (SLFN),凭借其快速训练速度和良好的泛化性能,在时间序列预测领域展现出巨大的潜力。然而,ELM 的预测精度很大程度上依赖于其隐层神经元的数目和输入权重、偏置等参数的选取。参数选择不当会导致模型欠拟合或过拟合,影响预测精度。为了克服这一局限性,本文提出了一种基于萨氏算法 (Salp Swarm Algorithm, SSA) 优化的 ELM 时间序列预测模型,即 SSA-ELM 模型,旨在通过 SSA 算法优化 ELM 的网络参数,提升其预测精度和泛化能力。

传统的 ELM 模型参数选择通常采用试错法或经验公式,效率低且缺乏理论指导。而 SSA 算法是一种新型的基于群体智能的优化算法,它模拟了水母群体觅食行为,具有寻优能力强、收敛速度快、易于实现等优点。将 SSA 算法引入 ELM 模型的优化过程中,可以有效地搜索最优的网络参数组合,提高模型的预测精度。具体而言,SSA 算法的目标函数是 ELM 模型的预测误差,通过最小化该目标函数,SSA 算法可以找到使 ELM 模型预测误差最小的网络参数。

本文提出的 SSA-ELM 模型主要包含以下几个步骤:

1. 数据预处理: 时间序列数据通常需要进行预处理,例如数据清洗、平滑、标准化等,以去除噪声,提高数据质量,并改善模型的学习效果。常用的数据预处理方法包括移动平均法、差分法和 Z-score 标准化等。选择合适的数据预处理方法取决于具体的时间序列数据的特点。

2. SSA 算法参数设置: 在应用 SSA 算法之前,需要设置算法的参数,例如种群规模、最大迭代次数、步长因子等。这些参数的设置会影响算法的收敛速度和寻优精度。参数设置需要根据具体问题进行调整,通常可以通过实验来确定最佳参数组合。

3. ELM 模型结构设计: 确定 ELM 模型的隐层神经元个数。隐层神经元个数的选取对模型的性能有显著影响,过少会导致欠拟合,过多则会导致过拟合。本文将采用 SSA 算法优化隐层神经元个数。

4. SSA-ELM 优化过程: 将 ELM 模型的预测误差作为 SSA 算法的目标函数。SSA 算法通过迭代寻优,调整 ELM 模型的输入权重、隐层偏置和输出权重,最终找到使得预测误差最小的参数组合。 此过程可以描述为:SSA 算法生成一组候选解,代表不同的 ELM 网络参数。然后,将这些参数代入 ELM 模型进行训练和预测,计算相应的预测误差。根据预测误差,SSA 算法更新种群中每个个体的解,并逐渐逼近最优解。

5. 模型预测与评估: 使用训练好的 SSA-ELM 模型对测试集进行预测,并采用合适的评价指标对预测结果进行评估。常用的评价指标包括均方误差 (MSE)、均方根误差 (RMSE)、平均绝对误差 (MAE) 和 R 方 (R²) 等。这些指标可以综合反映模型的预测精度和泛化能力。

6. 模型结果分析及改进: 对模型的预测结果进行分析,并根据结果对模型进行改进。例如,可以尝试调整 SSA 算法的参数,或者改变 ELM 模型的结构,以提高预测精度。

与其他优化算法的比较: 本文将 SSA-ELM 模型与其他基于不同优化算法的 ELM 模型进行比较,例如粒子群算法 (PSO)-ELM 模型、遗传算法 (GA)-ELM 模型等,通过对比分析不同模型的预测精度和泛化能力,验证 SSA-ELM 模型的有效性。 这将涉及到对不同算法在收敛速度、求解精度和计算复杂度方面的比较。

总结: 本文提出了一种基于 SSA 算法优化的 ELM 时间序列预测模型,即 SSA-ELM 模型。该模型通过 SSA 算法优化 ELM 网络参数,有效提高了模型的预测精度和泛化能力。实验结果表明,SSA-ELM 模型在时间序列预测任务中具有良好的性能,优于传统的 ELM 模型和一些其他的优化算法 ELM 模型。未来的研究方向可以包括探索更先进的优化算法,以及将 SSA-ELM 模型应用于更复杂的时间序列预测问题。 此外,对 SSA 算法本身参数的进一步优化以及结合其他优化策略,例如自适应策略,可以进一步提升模型的性能和鲁棒性。 最后,深入研究 SSA-ELM 模型的理论性质,例如收敛性证明,将有助于更好地理解和改进该模型。

📣 部分代码

ormat shortg

warning off

addpath('func_defined')

%% 读取读取

result = xlsread('北半球光伏数据.xlsx','北半球光伏数据','E2:E296');

%% 数据分析

num_samples = length(result); % 样本个数

kim = 30; % 延时步长(kim个历史数据作为自变量)

zim = 1; % 跨zim个时间点进行预测

%% 构造数据集

for i = 1: num_samples-kim-zim+1

data(i, :) = [reshape(result(i: i + kim - 1), 1, kim), result(i + kim + zim - 1)];

end

%输入输出数据

input=data(:,1:end-1); %data的第一列-倒数第二列为特征指标

output=data(:,end); %data的最后面一列为输出的指标值

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

擅长领域:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP置换流水车间调度问题PFSP混合流水车间调度问题HFSP、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值