✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥 内容介绍
本文将深入探讨一篇题为“基于可重构智能表面(RIS)的6G通信系统及其精准可追踪用户移动性”的IEEE Transactions on Vehicular Technology期刊论文(Zhang, P., Zhang, J., Xiao, H., Du, H., Niyato, D., & Ai, B. (2022). RIS-Aided 6G Communication System With Accurate Traceable User Mobility. IEEE Trans. Veh. Tech.)及其相关MATLAB仿真代码包。该论文提出了一种基于复杂值扩展卡尔曼滤波器的鲁棒算法,以解决在RIS辅助的6G毫米波通信系统中,由于用户移动性带来的波束对准难题。本文将从理论基础、算法设计、仿真结果以及实际应用等方面,对该论文及其代码包进行全面的分析和解读。
一、 理论基础与问题背景
随着6G通信技术的快速发展,毫米波(mmWave)通信因其高频段带来的巨大带宽优势而备受瞩目。然而,毫米波信号的传播特性也带来了新的挑战,例如路径损耗大、易受障碍物影响以及对精确波束对准的极高要求。在移动场景下,用户终端的移动性会导致信道状态快速变化,传统的波束跟踪方法难以满足实时性要求。
可重构智能表面(RIS)作为一种新兴技术,能够通过控制大量单元的反射相位来操纵电磁波的传播路径,从而有效地改善信道质量,提高系统性能。在毫米波通信系统中引入RIS,可以创建额外的视距(LoS)路径,从而增强信号强度并提高波束成形精度。然而,RIS的引入也增加了波束跟踪的复杂性,因为需要同时优化RIS单元的相位和发射端波束方向,这给传统的基于训练的方法带来了巨大的挑战。
二、 复杂值扩展卡尔曼滤波器算法
该论文的核心贡献在于提出了一种基于复杂值扩展卡尔曼滤波器(Complex-Valued Extended Kalman Filter, C-VEKF)的鲁棒算法,用于解决RIS辅助毫米波通信系统中的波束对准问题。传统的卡尔曼滤波器只能处理实数变量,而信道状态和波束方向等参数通常为复数变量。C-VEKF算法能够有效地处理复数变量,并利用其强大的状态估计能力,实现对用户移动性和信道状态的精确跟踪。
具体而言,该算法将用户移动性和信道状态作为状态变量,通过建立状态方程和观测方程来描述系统的动态特性。状态方程描述了系统状态随时间的变化,而观测方程描述了通过接收信号获得的观测值与系统状态之间的关系。C-VEKF算法通过迭代更新状态估计值,从而实现对用户移动性和信道状态的精确跟踪。算法的关键在于准确建模系统的非线性特性,以及选择合适的噪声模型。
三、 仿真结果与分析
论文中提供的MATLAB仿真结果验证了该算法的有效性。与传统的基于训练的方法相比,该算法在均方误差(MSE)方面取得了17%的性能提升。此外,论文还研究了RIS单元数量对系统性能的影响,发现存在一个最佳的RIS单元数量,使得MSE最小。论文中提出了一种简单有效的算法来确定最佳RIS单元数量。仿真结果表明,通过在毫米波通信系统中采用RIS和该算法,波束跟踪性能可以提高37%。这些结果有力地证明了该算法在改善RIS辅助毫米波通信系统性能方面的潜力。
四、 实际应用与未来展望
该论文的研究成果具有重要的实际应用价值。在6G通信系统中,尤其是在高动态环境下,精确的波束对准至关重要。该算法能够有效地提高波束跟踪的精度和效率,从而提升系统吞吐量和用户体验。此外,该算法的鲁棒性也使其能够适应各种复杂的信道环境。
📣 部分代码
function J_h = Jacobian_h(N_ris,ris_vec,k_d,x,theta_g) % size - N_ue×3
J_h1 = 1/sqrt(N_ris)*ris_vec*exp(-1i*k_d*[0:N_ris-1]'*(cos(x(3))-cos(theta_g)));
J_h2 = 1i/sqrt(N_ris)*ris_vec*exp(-1i*k_d*[0:N_ris-1]'*(cos(x(3))-cos(theta_g)));
J_h3 = (x(1)+1i*x(2))/sqrt(N_ris)*(1i*k_d*sin(x(3)))*ris_vec*([0:N_ris-1]'...
.*exp(-1i*k_d*[0:N_ris-1]'*(cos(x(3))-cos(theta_g))));
J_h = [J_h1,J_h2,J_h3];
end
⛳️ 运行结果
🔗 参考文献
P. Zhang, J. Zhang, H. Xiao, H. Du, D. Niyato and B. Ai, "RIS-Aided 6G Communication System With Accurate Traceable User Mobility," in IEEE Trans. Veh. Tech., 2022.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制
擅长领域:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇