【电力系统】基于合作型Stackerlberg博弈的考虑差别定价和风险管理的微网运行策略研究Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,求助可私信。

🔥 内容介绍

微网作为一种新兴的电力系统形态,在提高能源利用效率、促进可再生能源消纳等方面具有重要意义。然而,微网的运行面临着诸多挑战,包括不同用户对电力需求的差异性、可再生能源发电的不确定性以及市场环境下利润最大化的追求。本文针对这些挑战,提出了一种基于合作型Stackelberg博弈的微网运行策略,该策略同时考虑了差别定价和风险管理。在Stackelberg博弈框架下,微网运营商作为领导者,根据用户的需求差异和风险偏好制定差别定价策略,用户作为跟随者,根据价格信号调整其用电行为。同时,通过引入风险度量指标,微网运营商可以在追求利润最大化的同时有效控制运行风险。通过仿真实验验证了所提出策略的有效性,结果表明该策略可以在满足用户需求的同时提高微网的经济效益和运行可靠性。

关键词: 微网;Stackelberg博弈;差别定价;风险管理;合作博弈;运行策略

1. 引言

随着能源危机和环境问题的日益突出,发展清洁能源和提高能源利用效率已成为全球共识。微网作为一种能够灵活接入可再生能源、实现能源就地利用的电力系统形态,受到了广泛关注。微网通常由分布式电源、储能装置、负荷以及控制系统构成,既可以独立运行,也可以与主网并网运行。然而,微网的运行并非没有挑战。

首先,微网内的用户具有不同的用电需求和偏好,例如,工业用户对电力价格的敏感度可能较低,而居民用户对价格的敏感度则可能较高。如何针对不同用户制定合理的定价策略,以实现微网的公平性和效率性,是一个亟待解决的问题。其次,可再生能源发电具有间歇性和不确定性,这使得微网的运行面临着较高的风险。如何有效管理这些风险,保证微网的安全稳定运行,是另一个重要挑战。最后,微网运营商在市场环境下追求利润最大化,需要在满足用户需求、降低运行风险的同时,实现自身的经济利益。

为了解决上述问题,本文提出了一种基于合作型Stackelberg博弈的微网运行策略,该策略同时考虑了差别定价和风险管理。Stackelberg博弈是一种领导者-跟随者博弈模型,其中领导者(微网运营商)首先制定策略,然后跟随者(用户)根据领导者的策略做出响应。本文采用合作型Stackelberg博弈,允许用户通过某种形式的合作(如聚合或灵活用电)来优化其整体效益,并最终影响微网运营商的定价策略。通过差别定价,微网运营商可以根据不同用户的需求弹性制定不同的电价,从而实现资源配置的效率性。同时,通过引入风险度量指标,微网运营商可以在追求利润最大化的同时有效控制运行风险。

2. 相关研究

微网运行策略一直是学术界研究的热点,已经涌现出大量的相关研究成果。

2.1 基于博弈论的微网运行策略

博弈论为研究微网内部各主体之间的相互作用提供了一种有效的工具。常见的博弈模型包括:

  • 非合作博弈: 每个参与者(例如,用户或分布式电源)独立做出决策,以最大化自身的效用。这种模型能够有效模拟微网中各个主体的自主行为,但往往难以实现整体的最优。

  • 合作博弈: 参与者可以通过合作来提高整体的收益。例如,用户可以通过聚合形成虚拟电厂,共同参与微网的能量交易。

  • Stackelberg博弈: 包含一个领导者和一个或多个跟随者。领导者首先制定策略,跟随者根据领导者的策略做出响应。这种模型适用于微网运营商作为领导者、用户作为跟随者的场景。

以往的研究已经将博弈论应用于微网运行的各个方面,包括能量管理、定价策略和需求响应等。例如,一些研究利用Stackelberg博弈模型,探讨了微网运营商如何通过制定合理的电价,引导用户的用电行为,从而优化微网的运行。

2.2 差别定价策略

差别定价是一种根据不同的用户、时间和地点制定不同价格的定价策略。它可以更好地反映不同用户对电力需求的差异性,从而提高资源配置的效率性。在微网中,差别定价可以根据用户的用电习惯、价格敏感度以及参与需求响应的能力等因素进行制定。常见的差别定价方法包括:

  • 基于时段的定价: 将一天划分为不同的时段,例如高峰时段、低谷时段和平段,并根据不同时段的供需情况制定不同的电价。

  • 基于用户的定价: 根据不同用户的用电性质和弹性,制定不同的电价。例如,对工业用户可以采用较低的价格,对高弹性用户可以采用动态价格。

  • 基于需求的定价: 根据用户的实时需求量制定价格。这种方法可以更好地反映实时的供需情况,引导用户合理用电。

2.3 风险管理

微网运行面临着诸多不确定性,包括可再生能源发电的波动性、用户负荷的随机性以及市场价格的波动等。风险管理旨在识别、评估和控制这些风险,从而保证微网的安全稳定运行。常见的风险管理方法包括:

  • 场景分析: 通过模拟不同的场景,评估不同风险因素对微网运行的影响。

  • 概率分析: 通过建立概率模型,分析风险因素的概率分布和期望值。

  • 鲁棒优化: 通过考虑最坏情况,优化微网的运行策略,从而保证在不确定性下的性能。

  • 风险度量指标: 通过引入风险度量指标,例如条件风险值 (CVaR) 等,可以定量评估微网运行的风险水平。

3. 基于合作型Stackelberg博弈的微网运行模型

本文提出的微网运行策略基于合作型Stackelberg博弈模型。该模型由微网运营商(领导者)和用户(跟随者)两部分构成。

3.1 微网运营商模型

微网运营商的目标是最大化自身的利润,同时控制运行风险。其决策变量包括:

  • 差别电价: 根据不同用户和时段制定不同的电价。本文假设存在两类用户,高弹性用户和低弹性用户,每类用户在不同时段有不同的需求。

  • 储能运行策略: 包括储能的充放电功率。

  • 风险管理策略: 通过引入风险度量指标,评估和控制运行风险。

微网运营商的优化目标函数可以表示为:

 

ini

Maximize Profit = Revenue - Cost - Risk_Penalty

其中:

  • Revenue: 微网运营商的收入,来自用户支付的电费。

  • Cost: 微网运营商的成本,包括分布式发电的成本、储能的维护成本以及向主网购电的成本。

  • Risk_Penalty: 风险惩罚项,反映微网运行风险的程度,基于风险度量指标计算得出。

3.2 用户模型

用户作为Stackelberg博弈的跟随者,其目标是最小化自身的用电成本,同时满足其用电需求。用户决策变量包括:

  • 用电量: 用户在不同时段的用电量。

本文假设用户可以通过某种形式的合作,例如形成虚拟电厂,聚合其需求,并且可以根据价格信号调整其用电行为,以实现整体的用电成本最小化。用户的优化目标函数可以表示为:

 

ini

Minimize Cost = ∑ (Price * Consumption)

3.3 合作型Stackelberg博弈求解

为了求解上述合作型Stackelberg博弈,本文采用迭代算法。首先,微网运营商作为领导者,根据用户的历史用电行为和风险偏好,制定初始的差别定价策略。然后,用户作为跟随者,根据当前的电价,调整其用电行为,实现自身用电成本的最小化。接着,微网运营商根据用户的响应,更新其定价策略,并评估运行风险。这个过程不断迭代,直至达到纳什均衡。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

🌿 往期回顾可以关注主页,点击搜索

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值