✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
乒乓球运动以其快速的球速、复杂的旋转和多变的落点而著称,这使得对乒乓球的跟踪以及三维轨迹计算成为一项极具挑战性的任务。 然而,随着计算机视觉、图像处理和人工智能技术的快速发展,精确、高效地跟踪乒乓球并重建其三维轨迹已经成为可能。 本文旨在深入探讨乒乓球跟踪与三维轨迹计算所面临的技术挑战,并展望其在运动分析、训练辅助和自动化系统等领域的广阔应用前景。
乒乓球跟踪,顾名思义,指的是在视频序列中实时或离线地定位并识别乒乓球的位置。 这一过程看似简单,实则涉及诸多复杂因素。 首先,乒乓球体积小,在高速运动中容易出现运动模糊,导致图像质量下降,增加了识别难度。 其次,乒乓球的颜色与背景环境可能相似,尤其是在光线变化复杂的场景下,容易产生混淆,造成误判。 再次,乒乓球运动轨迹复杂,包括直线运动、弧线运动、旋转运动等,需要鲁棒的算法来适应不同的运动模式。 最后,实时性要求高,尤其是在对抗激烈的比赛中,需要快速准确地跟踪乒乓球,才能为后续的分析和决策提供依据。
为了应对以上挑战,研究者们提出了多种跟踪算法。 基于特征的跟踪方法是其中一种常见的策略,它首先提取乒乓球的显著特征,例如颜色、形状、纹理等,然后利用这些特征在后续帧中进行搜索和匹配。 例如,可以使用颜色空间变换(如HSV或YUV)来增强乒乓球的颜色对比度,并通过形态学操作(如膨胀和腐蚀)来去除噪声,从而提高跟踪的准确性。 此外,还可以利用边缘检测算法(如Canny算子)来提取乒乓球的轮廓,并结合霍夫变换来检测圆形,从而实现鲁棒的跟踪。
另一种常用的跟踪方法是基于模型的跟踪方法,它利用预先建立的乒乓球运动模型来预测其在下一帧中的位置,然后利用搜索算法在该位置附近进行搜索。 常用的运动模型包括卡尔曼滤波器和粒子滤波器。 卡尔曼滤波器是一种线性滤波器,适用于线性系统和高斯噪声,可以有效地预测乒乓球的运动轨迹。 粒子滤波器是一种非线性滤波器,适用于非线性系统和非高斯噪声,可以更好地适应复杂的运动模式。 基于模型的跟踪方法具有良好的预测能力,可以在一定程度上克服运动模糊和遮挡等问题。
除了传统的跟踪算法外,近年来,深度学习技术在乒乓球跟踪领域也取得了显著进展。 卷积神经网络(CNN)可以自动学习乒乓球的特征,并具有强大的目标检测和识别能力。 例如,可以使用Faster R-CNN、YOLO等目标检测算法来检测乒乓球的位置,并使用跟踪算法(如DeepSORT)来保持乒乓球的身份信息。 深度学习方法可以有效地克服光线变化、背景干扰等问题,并具有良好的泛化能力。
在成功跟踪乒乓球之后,下一步是计算其三维轨迹。 三维轨迹的计算需要利用多个摄像头的图像信息,通过立体视觉原理来实现。 立体视觉的基本思想是利用两个或多个摄像头从不同角度拍摄同一场景,然后利用图像匹配算法来找到同一物体在不同图像中的对应点,最后利用三角测量原理来计算物体的三维坐标。
为了实现精确的三维轨迹计算,需要对摄像头进行精确的标定,即确定摄像头的内参数(如焦距、主点坐标)和外参数(如位置、姿态)。 摄像头标定是一个复杂的过程,需要使用专门的标定板和标定算法。 常用的标定算法包括张正友标定法和多平面标定法。
在获得摄像头的参数之后,可以使用图像匹配算法来找到乒乓球在不同图像中的对应点。 常用的图像匹配算法包括基于特征的匹配方法和基于区域的匹配方法。 基于特征的匹配方法首先提取图像中的特征点(如SIFT或SURF),然后利用特征描述子进行匹配。 基于区域的匹配方法则利用图像的灰度信息或颜色信息进行匹配。
获得乒乓球在不同图像中的对应点之后,可以使用三角测量原理来计算其三维坐标。 三角测量原理是基于几何关系,利用两个摄像头的视角和对应点的图像坐标来计算物体的三维坐标。
然而,在实际应用中,三维轨迹计算面临诸多挑战。 首先,摄像头的标定误差会直接影响三维轨迹的精度。 其次,图像匹配算法的误差也会导致三维轨迹的误差。 再次,乒乓球的运动速度快,容易出现运动模糊,导致图像质量下降,增加了图像匹配的难度。 最后,在某些情况下,乒乓球可能会被其他物体遮挡,导致无法找到对应点,从而无法计算其三维坐标。
⛳️ 运行结果
🔗 参考文献
📣 部分代码
function tables = cleanData(tables)
%CLEANDATA Summary of this function goes here
% Remove bad data retains frame number for comaparison
% Ignore the NaNs
for i=1:size(tables,2)
table = tables{i};
rows_w_nan = sum(isnan(table{:,:}), 2) > 0;
tables = del_rows(tables, rows_w_nan);
end
% Ignore the negatives.
% TODO: Why are there negatives? Someone should investigate!
for i=1:size(tables,2)
table = tables{i};
rows_w_neg = sum(table{:,:} < 0, 2) > 0;
tables = del_rows(tables, rows_w_neg);
end
end
function output = del_rows(tables, rows)
if sum(rows) > 0
for i=1:size(tables,2)
table = tables{i};
table(rows, :) = [];
tables{i} = table;
end
end
output = tables;
end
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇