✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
随着全球能源危机和环境问题的日益凸显,电动汽车(Electric Vehicle, EV)作为一种清洁、高效的交通工具,受到了越来越多的关注。然而,电动汽车的大规模普及也给电网带来了巨大的挑战。无序充电模式会导致电网负荷峰谷差增大、电网稳定性降低等问题,进而影响电力系统的安全可靠运行。因此,研究电动汽车的充电负荷特性,并制定合理的充电策略,对于促进电动汽车的健康发展和电网的稳定运行具有重要意义。本文以“有序充电”为核心,采用蒙特卡洛方法,对电动汽车充电负荷曲线进行研究,重点关注充电开始时间、充电电量以及充电功率三个关键因素,旨在为优化电动汽车充电策略提供理论依据。
一、电动汽车充电负荷建模的重要性
精确的电动汽车充电负荷模型是进行充电策略优化、电网规划和运行的关键基础。传统的负荷预测方法通常无法准确预测电动汽车的充电行为,原因在于:
- 随机性:
电动汽车的出行行为具有高度的随机性,包括出行距离、出行时间、停车地点等,这些因素直接影响充电开始时间和充电电量。
- 用户行为差异:
不同用户的充电习惯、充电偏好以及对电价的敏感程度存在显著差异,导致充电行为的个体化。
- 数据缺失:
缺乏大规模、高精度的电动汽车充电数据,导致模型难以准确捕捉充电行为的内在规律。
因此,需要采用能够有效处理随机性和不确定性的建模方法,才能构建准确的电动汽车充电负荷模型。蒙特卡洛方法作为一种基于随机抽样的数值计算方法,可以很好地模拟电动汽车充电行为的随机性,并通过大量的模拟实验,得到电动汽车充电负荷的统计特性。
二、蒙特卡洛方法在电动汽车充电负荷建模中的应用
蒙特卡洛方法通过生成大量的随机样本,模拟电动汽车用户的出行和充电行为,从而得到电动汽车充电负荷的概率分布。其基本步骤如下:
-
参数设置与概率分布确定: 首先,需要确定影响电动汽车充电行为的关键参数,例如:
合理选择概率分布的类型和参数是蒙特卡洛模拟的关键,需要基于实际数据进行统计分析和验证。
- 出行相关参数:
出行距离、出行开始时间、出行结束时间等。这些参数通常可以采用基于实际交通数据的概率分布来描述,如正态分布、对数正态分布、韦布尔分布等。
- 充电相关参数:
初始电量(State of Charge, SOC)、目标电量、充电功率、充电开始时间等。这些参数也同样可以用概率分布进行描述,例如,初始SOC可以基于用户每日的出行距离进行推算,充电开始时间可以基于出行结束时间和用户的充电偏好进行建模。
- 车辆参数:
电池容量、百公里耗电量等。这些参数通常可以基于市场上的电动汽车型号进行设定。
- 其他参数:
电价敏感度、充电习惯等。这些参数可以通过问卷调查、用户访谈等方式进行获取。
- 出行相关参数:
-
随机抽样: 基于上述设定的概率分布,采用随机数生成器生成大量的随机样本,每个样本代表一个电动汽车用户的出行和充电行为。
-
充电行为模拟: 对于每个随机样本,模拟电动汽车用户的充电行为,包括:
- 判断是否需要充电:
基于初始SOC和出行距离,判断电动汽车是否需要充电。
- 确定充电开始时间:
基于出行结束时间和用户的充电偏好,确定充电开始时间。考虑到有序充电策略,可以引入电价机制或时间段约束,引导用户在电网负荷较低时段进行充电。
- 计算充电电量:
基于初始SOC、目标SOC和电池容量,计算充电电量。可以假设用户总是充满电,也可以根据用户的实际需求,设置不同的目标SOC。
- 计算充电功率:
基于充电电量和充电时间,计算充电功率。可以假设充电功率恒定,也可以根据充电设备的实际情况,设置不同的充电功率曲线。
- 判断是否需要充电:
-
负荷曲线叠加: 将所有随机样本的充电负荷叠加起来,得到电动汽车的总充电负荷曲线。
-
结果分析: 对蒙特卡洛模拟的结果进行统计分析,例如,计算电动汽车充电负荷的平均值、峰值、谷值、峰谷差等,并分析不同因素对充电负荷的影响。
三、充电开始时间、充电电量与充电功率对负荷曲线的影响
-
充电开始时间: 充电开始时间直接决定了电动汽车充电负荷在时间上的分布。无序充电模式下,充电开始时间通常集中在晚高峰时段,导致电网负荷峰值显著增加。通过有序充电策略,引导用户在低谷时段进行充电,可以有效平抑电网负荷,提高电网的利用率。
- 策略示例:
可以设置分时电价,鼓励用户在低谷时段充电,或通过奖励机制引导用户在指定时段充电。
- 策略示例:
-
充电电量: 充电电量决定了电动汽车充电的总能量需求。充电电量与电动汽车的出行距离、用户的充电习惯等因素密切相关。通过合理的充电策略,可以有效降低总充电电量,减少对电网的压力。
- 策略示例:
可以通过智能充电APP,实时监测电动汽车的电量,并根据用户的出行计划,推荐合理的充电方案,避免过度充电。
- 策略示例:
-
充电功率: 充电功率决定了电动汽车充电的速度和电网的瞬时负荷。高功率充电虽然可以缩短充电时间,但也会导致电网的瞬时负荷大幅增加,对电网的稳定性带来挑战。通过调整充电功率,可以在保证充电需求的同时,降低对电网的冲击。
- 策略示例:
可以采用慢充和快充相结合的方式,引导用户在夜间采用慢充模式,在需要紧急充电时采用快充模式。还可以根据电网的负荷情况,动态调整充电功率。
- 策略示例:
四、有序充电策略的实施与优化
基于蒙特卡洛模拟结果,可以制定和优化电动汽车有序充电策略。常见的有序充电策略包括:
- 分时电价:
通过设置不同时段的电价,引导用户在低谷时段充电。
- 直接控制:
通过智能充电桩,直接控制电动汽车的充电功率和充电时间。
- 间接控制:
通过奖励机制或需求响应项目,引导用户调整充电行为。
在实际应用中,需要根据电网的具体情况,综合考虑经济性、用户体验和电网稳定性等因素,选择合适的有序充电策略。同时,还需要不断优化充电策略,以适应电动汽车普及和电网发展的需要。
五、结论与展望
本文以蒙特卡洛方法为基础,对电动汽车的充电负荷曲线进行了研究,重点关注充电开始时间、充电电量以及充电功率三个关键因素。研究结果表明,电动汽车的充电行为具有高度的随机性,需要采用能够有效处理随机性和不确定性的建模方法,才能构建准确的充电负荷模型。通过合理的有序充电策略,可以有效平抑电网负荷,提高电网的利用率,促进电动汽车的健康发展。
⛳️ 运行结果
🔗 参考文献
[1] 王帆.基于卡尔曼滤波和粒子滤波的移动机器人同时定位与地图创建研究[D].西安工程大学[2025-02-27].DOI:CNKI:CDMD:2.1014.050521.
[2] 曲志昱,王超然,孙萌.基于改进迭代扩展卡尔曼滤波的3星时频差测向融合动目标跟踪方法[J].电子与信息学报, 2021, 43(10):7.DOI:10.11999/JEIT200526.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇