✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
无人机(UAV)路径规划作为无人机应用的关键技术,在复杂三维环境中面临着多目标优化和局部最优陷阱的双重挑战。传统的路径规划方法难以兼顾路径长度、安全性和平滑性等多重目标,并且容易陷入局部最优,导致规划出的路径并非最优解。针对这些问题,本文提出一种基于聚类的特殊拥挤距离(CSCD)的多模态多目标差分进化算法(CSCD-MMODE)用于求解无人机三维路径规划问题。该算法利用聚类方法对种群进行划分,并设计一种特殊的拥挤距离度量方法,以维持种群的多样性,避免算法过早收敛。同时,结合差分进化算法的全局搜索能力,有效地探索Pareto前沿上的多个局部最优解。实验结果表明,与现有算法相比,本文提出的CSCD-MMODE算法在路径长度、安全性和平滑性等多个目标上均表现出更优的性能,并能够有效克服局部最优陷阱,获得更优的Pareto解集。
关键词: 无人机路径规划,多目标优化,差分进化算法,聚类,拥挤距离,多模态优化
1. 引言
无人机技术近年来发展迅速,广泛应用于各个领域,如物流配送、环境监测、灾害救援、农业植保等。无人机路径规划是无人机应用的核心环节,其目标是在满足各种约束条件(如避障、航程限制等)的前提下,规划出一条最优或近似最优的飞行路径。在复杂三维环境中,无人机路径规划面临着诸多挑战:
- 多目标优化:
实际应用中,通常需要同时优化多个目标,例如路径长度、安全性、平滑性、飞行时间等。这些目标之间往往存在冲突,难以同时达到最优。
- 环境复杂性:
真实环境通常包含各种障碍物(如建筑物、山峰、树木等),需要设计有效的避障策略。
- 计算复杂性:
三维空间中的路径搜索空间巨大,传统的路径规划方法计算效率较低,难以满足实时性要求。
- 局部最优陷阱:
传统的优化算法容易陷入局部最优解,导致规划出的路径并非全局最优。
针对这些挑战,研究者们提出了各种无人机路径规划方法,主要包括:
- 基于搜索的算法:
例如A*算法、D*算法等,这些算法通过搜索状态空间来寻找最优路径。然而,这些算法计算复杂度高,难以处理高维空间和复杂环境。
- 基于采样的算法:
例如快速扩展随机树(RRT)算法及其变种,这些算法通过随机采样来探索搜索空间,具有较好的效率和灵活性。但是,这些算法生成的路径往往不够平滑。
- 基于优化的算法:
例如遗传算法(GA)、粒子群优化(PSO)、差分进化算法(DE)等,这些算法通过迭代优化来寻找最优路径。这些算法具有全局搜索能力,但容易陷入局部最优解。
为了克服传统算法的局限性,本文提出一种基于聚类的特殊拥挤距离(CSCD)的多模态多目标差分进化算法(CSCD-MMODE)用于求解无人机三维路径规划问题。该算法的主要贡献在于:
- 引入聚类方法:
利用聚类方法将种群划分为多个子种群,每个子种群专注于探索Pareto前沿上的一个区域,从而增强算法的探索能力和多样性。
- 设计特殊的拥挤距离度量方法:
提出一种基于聚类的特殊拥挤距离(CSCD)度量方法,用于评估个体周围的密度,并引导算法探索稀疏区域,维持种群的多样性。
- 结合差分进化算法:
利用差分进化算法的全局搜索能力,有效地探索Pareto前沿上的多个局部最优解。
2. 相关工作
本节回顾了无人机路径规划领域的相关研究工作,主要包括多目标优化算法和多模态优化算法。
2.1 多目标优化算法
多目标优化算法旨在寻找一组能够平衡多个目标函数的解,这些解构成了Pareto前沿。常用的多目标优化算法包括:
- 加权和方法:
将多个目标函数加权求和,转化为单目标优化问题。该方法的局限性在于需要预先设定权重,且难以找到非凸Pareto前沿上的解。
- ε-约束方法:
将部分目标函数转化为约束条件,优化剩余的目标函数。该方法的局限性在于需要设定ε值,且难以找到非连续Pareto前沿上的解。
- Pareto支配方法:
基于Pareto支配关系来比较解的优劣,常用的算法包括NSGA-II、SPEA2等。这些算法能够较好地逼近Pareto前沿,但容易陷入局部最优解。
2.2 多模态优化算法
多模态优化算法旨在寻找多个局部最优解,这些解通常具有不同的特性,能够满足不同的应用需求。常用的多模态优化算法包括:
- 拥挤距离:
通过评估个体周围的密度来维持种群的多样性。
- 小生境技术:
将种群划分为多个小生境,每个小生境专注于探索一个局部最优解。
- 聚类方法:
利用聚类算法将种群划分为多个子种群,每个子种群专注于探索Pareto前沿上的一个区域。
3. 基于聚类的特殊拥挤距离的多模态多目标差分进化算法 (CSCD-MMODE)
本节详细介绍了本文提出的CSCD-MMODE算法。该算法结合了聚类方法、特殊拥挤距离度量方法和差分进化算法,旨在有效地求解无人机三维路径规划问题。
3.1 算法框架
CSCD-MMODE算法的整体框架如下:
- 初始化:
随机生成初始种群。
- 聚类:
利用K-means算法对种群进行聚类,将种群划分为K个子种群。
- 评估:
计算每个个体的目标函数值,并根据Pareto支配关系对个体进行排序。
- 特殊拥挤距离计算:
计算每个个体的特殊拥挤距离,用于评估个体周围的密度。
- 选择:
根据Pareto支配关系和特殊拥挤距离,选择优秀的个体进入下一代。
- 交叉:
对选择出的个体进行交叉操作,产生新的个体。
- 变异:
对交叉后的个体进行变异操作,增加种群的多样性。
- 重复步骤2-7,直到满足终止条件。
3.2 聚类策略
本文采用K-means算法对种群进行聚类。K-means算法是一种常用的聚类算法,其目标是将n个数据点划分为k个簇,使得每个数据点与其所属簇的中心点之间的距离最小化。在CSCD-MMODE算法中,将每个个体视为一个数据点,目标函数值作为特征向量,利用K-means算法将种群划分为K个子种群。每个子种群专注于探索Pareto前沿上的一个区域,从而增强算法的探索能力和多样性。
3.3 特殊拥挤距离度量方法 (CSCD)
传统的拥挤距离度量方法通常只考虑个体在目标空间中的密度,而忽略了个体在决策空间中的分布情况。为了更好地维持种群的多样性,本文提出一种基于聚类的特殊拥挤距离(CSCD)度量方法。CSCD的计算公式如下:
scss
CSCD(i) = α * CD_objective(i) + (1-α) * CD_decision(i)
其中,
CSCD(i)
表示个体
i
的特殊拥挤距离。CD_objective(i)
表示个体
i
在目标空间中的拥挤距离,采用传统的拥挤距离计算方法。CD_decision(i)
表示个体
i
在决策空间中的拥挤距离,计算方法如下:
scss
CD_decision(i) = 1 / |S_i| * Σ d(x_i, x_j)
其中,
S_i
表示与个体
i
属于同一个子种群的所有个体集合。d(x_i, x_j)
表示个体
i
和个体j
在决策空间中的欧氏距离。|S_i|
表示集合
S_i
中元素的个数.α
是一个权重系数,用于平衡目标空间和决策空间中的拥挤程度。
CSCD度量方法综合考虑了个体在目标空间和决策空间中的密度,能够更好地评估个体周围的拥挤程度,并引导算法探索稀疏区域,维持种群的多样性。
3.4 差分进化操作
本文采用差分进化算法的变异和交叉操作来生成新的个体。差分进化算法是一种基于群体差异的进化算法,其基本思想是通过个体之间的差异信息来指导种群的进化。
- 变异操作:
从种群中随机选择三个个体
x_r1
、x_r2
、x_r3
,生成变异向量v_i = x_r1 + F * (x_r2 - x_r3)
,其中F
是缩放因子,用于控制变异的幅度。 - 交叉操作:
将变异向量
v_i
和目标向量x_i
进行交叉,生成新的个体u_i
。交叉操作的目的是将变异向量中的部分信息传递给目标向量,从而增加种群的多样性。常用的交叉方式包括二项式交叉和指数交叉。
4. 无人机三维路径规划问题建模
本节将无人机三维路径规划问题建模为一个多目标优化问题。
4.1 环境建模
本文采用三维栅格地图来描述无人机飞行环境。将三维空间划分为若干个大小相等的立方体栅格,每个栅格代表一个空间区域。根据栅格内是否存在障碍物,将栅格标记为自由栅格或障碍物栅格。
4.2 路径表示
无人机路径由一系列航路点组成,每个航路点代表无人机在三维空间中的一个位置。路径可以表示为:
ini
Path = {P_1, P_2, ..., P_n}
其中,P_i = (x_i, y_i, z_i)
表示第i
个航路点的坐标。
4.3 目标函数
本文考虑三个目标函数:路径长度、安全性和平滑性。
- 路径长度 (f_1):
路径的总长度,定义为所有航路点之间距离之和。路径长度越短,无人机的飞行成本越低。
ini
f_1 = Σ ||P_{i+1} - P_i||
- 安全性 (f_2):
路径的安全性,定义为路径与障碍物之间的最小距离的倒数。路径与障碍物之间的最小距离越大,安全性越高。
ini
f_2 = 1 / min(d(P_i, Obstacle))
其中,d(P_i, Obstacle)
表示航路点P_i
与最近的障碍物之间的距离。
- 平滑性 (f_3):
路径的平滑性,定义为相邻航段之间的角度变化之和。角度变化越小,路径越平滑。
css
f_3 = Σ angle(P_{i-1}, P_i, P_{i+1})
4.4 约束条件
本文考虑以下约束条件:
- 起点和终点约束:
路径的起点和终点必须与指定的起点和终点一致。
- 避障约束:
路径上的所有航路点都必须位于自由栅格中,避免与障碍物发生碰撞。
- 最大飞行距离约束:
路径的总长度不能超过无人机的最大飞行距离。
⛳️ 运行结果
🔗 参考文献
[1]顾清华,唐慧,李学现,等.融合聚类和小生境搜索的多模态多目标优化算法[J].智能系统学报, 2023, 18(5):1127-1141.DOI:10.11992/tis.202204040.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇