【深度学习】基于 K-means 聚类算法的图像区域分割附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

图像分割是计算机视觉领域一项至关重要的任务,其目标是将图像划分为具有语义或视觉意义的互不重叠的区域。图像分割技术广泛应用于医学图像分析、自动驾驶、遥感图像解译等多个领域。近年来,深度学习技术在图像分割领域取得了显著进展,但传统的聚类算法,如K-means,由于其实现简单、计算效率高,在某些场景下仍然具有一定的应用价值。本文将深入探讨基于K-means聚类算法的图像区域分割方法,分析其原理、优势、局限性以及可能的改进方向。

K-means聚类算法原理

K-means算法是一种非监督学习算法,旨在将数据集划分为K个不同的簇,使得每个数据点都归属于与其距离最近的簇的中心点(centroid)。对于图像分割而言,K-means算法将图像中的像素视为数据点,像素的特征,例如颜色值(RGB)或灰度值,作为数据的属性。算法的基本步骤如下:

  1. **初始化聚类中心:**随机选择K个像素作为初始聚类中心。这些初始中心点直接影响算法的收敛速度和最终结果。常用的初始化方法包括随机选取像素点、基于像素密度选取、以及使用K-means++算法等。

  2. **分配像素:**计算每个像素与K个聚类中心的距离,并将该像素分配到距离最近的聚类中心所在的簇。常用的距离度量方法包括欧氏距离、曼哈顿距离等。对于彩色图像,距离计算通常在RGB颜色空间进行。

  3. **更新聚类中心:**计算每个簇中所有像素的平均特征值(例如,RGB值的平均值),并将该平均值作为该簇新的聚类中心。

  4. **迭代:**重复步骤2和步骤3,直到聚类中心不再发生显著变化,或者达到预先设定的最大迭代次数。当聚类中心稳定,算法认为已经收敛,并输出最终的聚类结果。

K-means图像区域分割的实现步骤

基于K-means的图像区域分割的具体实现步骤如下:

  1. 图像预处理: 为了提高分割效果,通常需要对图像进行预处理。预处理操作包括:

    • 灰度化:

       对于彩色图像,可以将其转换为灰度图像,降低计算复杂度。

    • 降噪:

       使用滤波方法(例如高斯滤波、中值滤波)去除图像中的噪声,避免噪声影响聚类结果。

    • 归一化:

       将像素值归一化到[0, 1]范围内,消除不同特征量纲的影响。

  2. 特征提取: 将每个像素的特征提取出来,作为K-means算法的输入。常用的特征包括:

    • 颜色特征:

       直接使用像素的RGB值作为特征。

    • 纹理特征:

       使用Gabor滤波器、灰度共生矩阵(GLCM)等方法提取图像的纹理特征。

    • 位置特征:

       将像素的坐标(x, y)作为特征,有助于对图像中的空间区域进行分割。

  3. K-means聚类: 使用K-means算法对提取的特征进行聚类。需要设置聚类数量K,以及距离度量方法和迭代次数。

  4. 区域标记: 将每个像素分配到所属的簇,并用不同的颜色或灰度值标记不同的簇,从而形成分割后的图像。

  5. 后处理: 为了改善分割结果,可以进行后处理操作,例如:

    • 形态学操作:

       使用膨胀、腐蚀等形态学操作去除小的孤立区域,平滑区域边界。

    • 连通域分析:

       提取连通域,并根据面积、形状等特征对连通域进行过滤,去除不符合要求的区域。

K-means图像区域分割的优势与局限性

K-means算法用于图像区域分割具有以下优势:

  • 实现简单:

     K-means算法原理简单,易于理解和实现。

  • 计算效率高:

     K-means算法的计算复杂度较低,适用于处理中小型图像。

  • 无需人工标注:

     K-means算法是一种非监督学习算法,不需要人工标注的训练数据。

然而,K-means算法也存在一些局限性:

  • 对初始聚类中心敏感:

     初始聚类中心的选择会严重影响最终的聚类结果,可能导致局部最优解。

  • 需要预先指定聚类数量K:

     如何确定合适的K值是一个难题。选择不合适的K值会导致分割结果不理想。常用的确定K值的方法包括肘部法则、轮廓系数等。

  • 假设簇的形状为凸形:

     K-means算法假设簇的形状为凸形,对于非凸形状的区域分割效果较差。

  • 对噪声和异常值敏感:

     噪声和异常值会影响聚类中心的计算,导致分割结果不准确。

  • 只能利用像素本身的特征:

     K-means算法通常只利用像素的颜色、纹理等局部特征,无法有效利用图像的上下文信息,导致分割结果缺乏语义信息。

改进K-means图像区域分割的方法

为了克服K-means算法的局限性,可以采用以下方法对其进行改进:

  • 改进初始聚类中心选择方法:

     使用K-means++算法来选择初始聚类中心,该算法可以有效避免初始聚类中心过于集中。

  • 使用不同的距离度量方法:

     除了欧氏距离,还可以使用其他距离度量方法,例如马氏距离、余弦相似度等,以适应不同的数据分布。

  • 引入空间约束:

     将像素的位置信息纳入聚类过程,例如通过引入空间权重,使得相邻像素更容易被划分到同一个簇。

  • 与其他算法结合:

     可以将K-means算法与其他算法结合,例如与模糊C均值(FCM)算法结合,提高分割精度。

  • 使用深度学习方法进行特征提取:

     可以使用卷积神经网络(CNN)提取图像的深层特征,然后使用K-means算法对提取的特征进行聚类,从而提高分割效果。

基于深度学习的特征提取与K-means聚类

近年来,深度学习技术在特征提取方面表现出了强大的能力。可以将预训练的CNN模型(例如VGG、ResNet)作为特征提取器,提取图像的深层特征,然后使用K-means算法对这些深层特征进行聚类,从而实现图像区域分割。这种方法结合了深度学习的特征提取能力和K-means算法的计算效率,可以在一定程度上提高分割效果。具体步骤如下:

  1. 使用预训练的CNN模型提取图像的深层特征。

     例如,可以使用ResNet-50模型,提取图像的最后一层卷积层的输出作为特征向量。

  2. 对提取的特征向量进行降维。

     由于CNN提取的特征向量维度较高,可以使用PCA等降维方法降低特征向量的维度,减少计算复杂度。

  3. 使用K-means算法对降维后的特征向量进行聚类。
  4. 将每个像素分配到所属的簇,并用不同的颜色或灰度值标记不同的簇,从而形成分割后的图像。

总结与展望

K-means聚类算法作为一种经典的聚类算法,在图像区域分割领域仍然具有一定的应用价值。虽然K-means算法存在一些局限性,但可以通过改进初始聚类中心选择方法、引入空间约束、与其他算法结合、以及使用深度学习方法进行特征提取等方式来提高分割效果。随着深度学习技术的不断发展,基于深度学习的特征提取与K-means聚类相结合的方法将成为一种重要的图像区域分割方法。未来,可以进一步研究如何将深度学习的语义分割模型与K-means算法结合,从而实现更加精准和鲁棒的图像区域分割。此外,还可以探索如何利用K-means算法对图像中的目标进行检测和识别,例如将K-means算法应用于目标候选区域的生成,提高目标检测的效率和精度。

总而言之,K-means聚类算法作为一种传统的图像分割方法,虽然存在一定的局限性,但通过不断地改进和与其他技术的结合,仍然可以在某些特定场景下发挥重要作用。未来,我们需要继续探索K-means算法在图像分割领域的应用潜力,并不断完善和发展相关的技术,为计算机视觉领域的发展做出贡献。

⛳️ 运行结果

🔗 参考文献

[1] 柯圣财,李弼程,唐永旺,et al.基于卷积神经网络和二进制K-means的图像快速聚类[J].数据采集与处理, 2017, 32(5):10.DOI:10.16337/j.1004-9037.2017.05.014.

[2] 刘凯品.基于深度卷积神经网络和无监督K均值特征的SAR图像目标识别方法研究[D].五邑大学[2025-03-16].DOI:CNKI:CDMD:2.1017.257573.

[3] Wang Mengsi,Huo Hongtao,Luo Xiaoyang.基于稀疏自编码特征聚类算法的图像窜改检测[J].计算机应用研究, 2018, 035(012):3820-3823.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值