【电力系统】微电网两阶段鲁棒优化经济调度方法[3]【升级优化版本】附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

微电网,作为一种具有分布式电源、储能装置、负荷以及监控和保护装置的小型电力系统,在提高供电可靠性、促进可再生能源利用、降低能源成本等方面发挥着越来越重要的作用。然而,微电网的优化运行面临着诸多挑战,特别是可再生能源发电出力的不确定性以及负荷需求的波动性。针对这些挑战,鲁棒优化作为一种有效的处理不确定性的方法,受到了广泛关注。本文将围绕“微电网两阶段鲁棒优化经济调度方法[3]”及其升级优化版本展开深入探讨,旨在分析其核心思想、优势与局限性,并展望未来的发展趋势。

一、传统微电网优化调度方法及其局限性

传统的微电网优化调度方法主要包括确定性优化和随机优化。确定性优化方法通常基于历史数据或者预测值来构建优化模型,并将不确定性参数视为确定性数值。然而,这种方法忽略了实际运行中存在的不确定性,导致优化结果在实际运行中可能无法满足要求,甚至出现安全风险。随机优化方法则通过建立随机模型来描述不确定性,并利用概率分布来刻画不确定性参数的变化范围。虽然随机优化考虑了不确定性,但需要准确的概率分布信息,而实际工程中,往往难以准确获取这些信息。此外,随机优化通常会导致模型规模增大,求解难度增加。

二、两阶段鲁棒优化方法的核心思想与优势

鲁棒优化是一种针对不确定性的保守优化方法。与随机优化不同,鲁棒优化不需要准确的概率分布信息,只需要知道不确定性参数的变化范围即可。鲁棒优化的核心思想是寻找一个对所有可能的不确定性实现都可行的解。两阶段鲁棒优化是鲁棒优化的一种重要形式,其将优化问题分解为两个阶段:第一阶段是确定性决策阶段,主要确定一些不随不确定性变化的可调变量;第二阶段是不确定性响应阶段,主要确定一些随不确定性变化的可调变量,以应对不确定性的影响。

在微电网经济调度问题中,两阶段鲁棒优化方法的应用具有以下优势:

  • 处理不确定性:

     能够有效处理可再生能源发电出力和负荷需求的不确定性,保证微电网的运行安全和稳定性。

  • 无需准确概率分布:

     只需要知道不确定性参数的变化范围,避免了对概率分布信息的依赖,降低了模型建立的难度。

  • 保证可行性:

     能够找到一个对所有可能的不确定性实现都可行的解,确保了调度方案的鲁棒性。

  • 降低风险:

     相比于确定性优化方法,能够有效降低因不确定性造成的风险,提高微电网的运行可靠性。

三、两阶段鲁棒优化经济调度方法[3]及其升级优化版本

"微电网两阶段鲁棒优化经济调度方法[3]" 指的应该是相关文献中提出的一种具体实现两阶段鲁棒优化的方法。由于缺乏具体文献信息,这里只能从一般性的角度推断和分析。

该方法的核心思路可能包括以下几个方面:

  • 不确定性集合的构建:

     根据历史数据和预测信息,构建可再生能源发电出力和负荷需求的不确定性集合,描述其变化范围。常见的不确定性集合包括区间型、多面体型、椭球型等。

  • 优化模型的建立:

     构建两阶段鲁棒优化模型,其中第一阶段确定微电网的机组组合方案、储能充放电功率等,第二阶段根据不同的不确定性实现,调整微电网的发电计划、负荷削减量等。

  • 求解算法的设计:

     由于鲁棒优化模型通常较为复杂,需要设计高效的求解算法,如列生成算法、Benders分解算法、割平面算法等。

升级优化版本可能在以下几个方面进行了改进和提升:

  • 更精确的不确定性建模:

     可能采用更高级的不确定性集合,例如考虑相关性的多维椭球集合,或者基于数据驱动的方法,从历史数据中学习不确定性模型。

  • 更有效的优化模型:

     可能引入更精细的微电网模型,例如考虑机组的启停成本、爬坡约束等,或者采用更紧凑的优化模型,降低求解难度。

  • 更高效的求解算法:

     可能采用更先进的求解算法,例如基于分解策略的并行算法,或者利用机器学习技术加速求解过程。

  • 考虑运行约束的柔性:

     在原有的鲁棒模型基础上,引入一定程度的运行约束柔性,允许在极端情况下适当违反约束,以降低调度成本,提高经济性。这种方法通常被称为分布鲁棒优化或者可调鲁棒优化。

  • 考虑多目标优化:

     不仅考虑经济性,还考虑环境友好性、供电可靠性等多个目标,构建多目标鲁棒优化模型。

四、两阶段鲁棒优化方法在微电网经济调度中的局限性

尽管两阶段鲁棒优化方法在微电网经济调度中具有诸多优势,但也存在一些局限性:

  • 保守性:

     为了保证对所有可能的不确定性实现都可行,鲁棒优化通常会得到一个较为保守的解,导致调度成本较高。

  • 计算复杂度:

     鲁棒优化模型的求解通常较为复杂,需要消耗大量的计算资源和时间。

  • 不确定性集合的选择:

     不确定性集合的选择对优化结果有重要影响,如果选择不当,可能导致优化结果不理想。

  • 对极端情况的处理:

     传统的鲁棒优化方法对极端情况的处理过于保守,可能导致资源浪费。

五、未来发展趋势

为了克服两阶段鲁棒优化方法在微电网经济调度中的局限性,未来的研究方向可能包括:

  • 更先进的不确定性建模方法:

     研究基于数据驱动的不确定性建模方法,从历史数据中学习更准确的不确定性模型,降低模型的保守性。

  • 更高效的求解算法:

     研究基于并行计算、分解策略、机器学习等技术的求解算法,提高模型的求解效率。

  • 可调鲁棒优化方法:

     引入运行约束柔性,允许在极端情况下适当违反约束,以降低调度成本,提高经济性。

  • 分布鲁棒优化方法:

     基于概率分布信息的鲁棒优化方法,结合随机优化和鲁棒优化的优点,在保证鲁棒性的同时,提高经济性。

  • 考虑动态环境的鲁棒优化方法:

     研究能够适应动态变化的微电网运行环境的鲁棒优化方法,例如考虑负荷的弹性需求、可再生能源发电的实时预测等。

  • 多微网协同优化:

     将多个微电网联合起来进行优化调度,利用地域差异性,降低整体运行成本和风险。

六、结论

两阶段鲁棒优化方法为微电网经济调度提供了一种有效的解决方案,能够有效处理可再生能源发电出力和负荷需求的不确定性,保证微电网的运行安全和稳定性。然而,该方法也存在一定的局限性,例如保守性和计算复杂度。未来的研究方向应集中于更先进的不确定性建模方法、更高效的求解算法以及更灵活的鲁棒优化模型,以进一步提高微电网经济调度的效率和鲁棒性。随着微电网技术的不断发展,鲁棒优化将在微电网的优化运行中发挥越来越重要的作用。 通过不断的研究和改进,鲁棒优化方法有望成为解决微电网优化调度问题的关键技术,推动微电网的广泛应用和可持续发展。

⛳️ 运行结果

🔗 参考文献

[1] 刘一欣,郭力,王成山.微电网两阶段鲁棒优化经济调度方法[J].中国电机工程学报, 2018, 38(14):10.DOI:10.13334/j.0258-8013.pcsee.170500.

[2] 孟润泉,魏斌,韩肖清,等.计及阶梯碳交易机制的微电网两阶段鲁棒优化低碳经济调度方法:CN202210820908.1[P].CN202210820908.1[2025-03-22].

[3] 孟润泉,魏斌,韩肖清,等.计及阶梯碳交易机制的微电网两阶段鲁棒优化低碳经济调度方法:202210820908[P][2025-03-22].

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值