电机电流信号的调制信号双谱分析用于车削工况在线监测研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

车削作为一种重要的金属切削加工方法,广泛应用于制造业的各个领域。然而,车削过程复杂多变,易受到多种因素的影响,如刀具磨损、切削参数变化、材料不均匀性等,导致工件表面质量下降、刀具寿命缩短,甚至引发安全事故。因此,实现车削工况的在线监测,及时发现和诊断异常工况,对于提高生产效率、保证产品质量、降低生产成本具有重要的现实意义。

传统的车削工况监测方法主要依赖于加速度传感器、力传感器等,这些传感器虽然能够提供较为直接的工况信息,但也存在一些局限性。例如,加速度传感器容易受到环境噪声的影响,安装位置的选择也会影响其灵敏度;力传感器需要在刀柄或者机床上安装,增加了系统的复杂性和成本。此外,这些传感器通常只能反映局部信息,难以全面反映整个切削过程的状态。

近年来,基于电机电流信号的工况监测方法受到了越来越多的关注。电机作为机床的核心动力部件,其电流信号包含了丰富的工况信息。刀具切削负载的变化会直接反映在电机电流信号上,通过分析电机电流信号,可以间接推断切削过程的状态。相比于传统的传感器,电机电流传感器具有安装方便、成本低廉、不易受环境噪声干扰等优点。

然而,电机电流信号通常具有非线性、非平稳的特点,传统的时域和频域分析方法难以有效地提取其蕴含的工况信息。为了解决这个问题,高阶谱分析方法,特别是双谱分析方法,被引入到电机电流信号的分析中。双谱分析能够抑制高斯噪声的影响,并能有效地检测信号中的非线性耦合成分,从而提取更深层次的工况特征。

本文将重点探讨基于电机电流信号的调制信号双谱分析方法在车削工况在线监测中的应用。调制信号双谱分析是在传统双谱分析的基础上发展而来,它能够更好地捕捉信号中存在的调制现象,而调制现象往往与复杂的物理过程相关联,例如,刀具磨损引起的切削力波动可能会导致电机电流信号的调制。

具体来说,本文的研究思路如下:

  1. 电机电流信号的采集: 首先,需要搭建一个车削实验平台,利用电流传感器采集电机在不同工况下的电流信号。这些工况包括正常切削、刀具磨损、切削参数变化等。为了保证信号质量,需要选择合适的采样频率和传感器类型,并对采集到的信号进行预处理,例如滤波、去噪等。

  2. 调制信号的提取: 对采集到的电机电流信号进行调制信号提取。常用的方法包括解调、希尔伯特变换、包络分析等。这些方法能够将电流信号中的调制成分提取出来,突出工况变化引起的调制特征。

  3. 调制信号的双谱分析: 对提取到的调制信号进行双谱分析。双谱分析是一种三阶谱分析方法,它能够描述信号中三个不同频率分量之间的相互作用。通过计算调制信号的双谱,可以得到双谱幅度谱和相位谱。幅度谱反映了信号中各频率分量的能量分布,而相位谱则反映了信号中各频率分量之间的相位关系。

  4. 特征提取与模式识别: 从双谱幅度谱和相位谱中提取具有代表性的特征,例如双谱峰值的位置、高度、面积等。然后,利用模式识别算法,例如支持向量机(SVM)、神经网络等,建立工况分类模型。该模型能够根据提取到的特征,自动识别不同的车削工况。

  5. 在线监测系统搭建: 将上述分析流程集成到一个在线监测系统中。该系统能够实时采集电机电流信号,进行调制信号的提取和双谱分析,提取特征并进行工况识别,最终将监测结果显示给用户。

本文的研究意义主要体现在以下几个方面:

  • 提高车削工况监测的精度和可靠性:

     通过引入调制信号双谱分析方法,能够更有效地提取电机电流信号中蕴含的工况信息,从而提高车削工况监测的精度和可靠性。

  • 降低监测成本:

     电机电流传感器成本低廉,安装方便,相比于传统的传感器,能够降低监测系统的成本。

  • 实现车削工况的早期预警:

     通过在线监测系统,能够及时发现和诊断异常工况,实现车削工况的早期预警,避免严重的生产事故。

当然,本文的研究也存在一些挑战:

  • 调制信号提取的有效性:

     不同的调制信号提取方法具有不同的适用范围,需要根据具体的电机电流信号特点选择合适的提取方法。

  • 双谱分析的参数选择:

     双谱分析的参数,例如窗函数类型、窗长等,会对分析结果产生影响,需要进行优化选择。

  • 特征提取的有效性:

     需要选择具有代表性的特征,才能保证工况分类模型的准确性。

  • 模式识别算法的选择:

     不同的模式识别算法具有不同的优缺点,需要根据具体的问题选择合适的算法。

未来的研究方向可以包括:

  • 结合深度学习的双谱分析:

     利用深度学习技术,例如卷积神经网络(CNN),自动学习双谱图像中的特征,从而提高工况分类的精度。

  • 多传感器信息融合:

     将电机电流信号与其他传感器信号,例如加速度信号、力信号等,进行融合,从而实现更全面、更准确的工况监测。

  • 自适应工况监测:

     针对不同的车削参数和材料,开发自适应的工况监测系统,提高系统的通用性。

⛳️ 运行结果

🔗 参考文献

[1] 高忠林.弧焊电源控制及焊接质量在线监测数字化基础研究[D].天津大学,2008.DOI:10.7666/d.y1531745.

[2] 葛坚定.卫星用陀螺电机振动状态监测系统的设计与开发[D].哈尔滨工业大学,2015.

[3] 陈后金.数字信号处理(第2版)(BZ)[M].高等教育出版社,2008.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值