使用相位对立分布PWM(PODPWM)技术模拟了三电平NPC研究附Simulink仿真

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

三电平中点钳位式(NPC)逆变器因其具有较低的电压应力、较高的开关频率和优良的谐波性能,在电力电子领域得到了广泛应用。脉冲宽度调制(PWM)技术是驱动逆变器工作的基础。本文重点研究了相位对立分布PWM(PODPWM)技术在三电平NPC逆变器中的应用,通过仿真手段分析了PODPWM调制下NPC逆变器的运行特性,并对仿真结果进行了详细的讨论,为进一步优化三电平NPC逆变器的控制策略提供了理论依据。

关键词:三电平NPC逆变器;PODPWM;脉冲宽度调制;仿真;谐波分析

引言

随着能源危机和环境问题的日益严峻,高效、可靠的电力电子变换技术受到了前所未有的重视。逆变器作为电力电子变换的核心部件,被广泛应用于可再生能源并网、电机驱动、不间断电源(UPS)等领域。传统的两电平逆变器在高电压、大功率应用场合会面临开关器件电压应力大、谐波含量高等问题。三电平中点钳位式(NPC)逆变器作为一种重要的多电平逆变器拓扑,凭借其独特的结构优势,能够有效地降低开关器件的电压应力,降低谐波含量,提高输出电压的品质,从而在高压大功率领域获得了广泛的应用。

脉冲宽度调制(PWM)技术是控制逆变器开关状态的关键技术,其性能直接影响逆变器的输出特性。近年来,学者们提出了多种PWM调制策略,例如正弦脉宽调制(SPWM)、空间矢量脉宽调制(SVPWM)等。其中,相位对立分布PWM(PODPWM)调制技术以其实现简单、易于控制等优点,在三电平NPC逆变器中得到了广泛应用。本文旨在通过仿真手段,研究PODPWM调制技术在三电平NPC逆变器中的应用,分析其运行特性,为进一步优化控制策略提供参考。

三电平NPC逆变器拓扑及PODPWM调制原理

三电平NPC逆变器是一种典型的多电平逆变器,其主电路拓扑结构如图1所示。每个桥臂由四个开关器件(S1-S4)和两个钳位二极管(D1、D2)组成。中点钳位二极管将直流电压源分为三个电平,即正电压(+Vdc/2)、零电压(0)和负电压(-Vdc/2)。

[插入图1:三电平NPC逆变器拓扑结构图]

PODPWM调制技术的核心思想是将载波信号进行相位对立分布。具体来说,对于一个桥臂,采用两个相位相反的三角载波信号与调制波进行比较,生成开关控制信号。假设调制波为Vcontrol,两个载波信号分别为Vcarrier1和Vcarrier2,且Vcarrier1与Vcarrier2相位相反。开关信号的生成逻辑如下:

  • 如果Vcontrol > Vcarrier1,则S1导通,S2截止,S3导通,S4截止,输出电压为+Vdc/2。

  • 如果Vcarrier2 < Vcontrol < Vcarrier1,则S1截止,S2导通,S3导通,S4截止,输出电压为0。

  • 如果Vcontrol < Vcarrier2,则S1截止,S2导通,S3截止,S4导通,输出电压为-Vdc/2。

通过合理设置载波频率和调制比,可以控制逆变器的输出电压和频率,并有效降低谐波含量。

仿真模型搭建及参数设置

为了验证PODPWM调制技术在三电平NPC逆变器中的可行性和性能,本文采用Simulink平台搭建了仿真模型。模型包括三电平NPC逆变器主电路、PODPWM调制模块和负载电路。

仿真模型的参数设置如下:

  • 直流电压源:Vdc = 600V

  • 开关频率:fsw = 5kHz

  • 调制频率:fm = 50Hz

  • 调制比:ma = 0.8

  • 负载电阻:R = 10Ω

  • 负载电感:L = 10mH

仿真结果与分析

通过仿真,我们获得了三电平NPC逆变器在PODPWM调制下的输出电压、输出电流以及开关器件的电压应力等关键波形。

1. 输出电压与电流波形

仿真结果显示,三电平NPC逆变器在PODPWM调制下可以生成三电平的输出电压波形。输出电压呈现阶梯波形状,与理论分析相符。输出电流波形基本呈正弦波形,证明PODPWM调制技术能够有效地降低谐波含量。

[插入图2:输出电压波形]

[插入图3:输出电流波形]

2. 开关器件电压应力

仿真结果显示,每个开关器件的最大电压应力为Vdc/2,即300V,有效地降低了开关器件的电压负担,从而可以使用较低耐压等级的开关器件,降低系统成本。

[插入图4:开关器件电压应力波形]

3. 谐波分析

利用FFT分析工具对输出电压和输出电流进行了谐波分析。结果表明,输出电压和输出电流中的谐波含量较低,验证了PODPWM调制技术在抑制谐波方面的有效性。THD(总谐波失真)值明显低于传统的两电平逆变器。

[插入图5:输出电压谐波分析结果]

[插入图6:输出电流谐波分析结果]

4. 中点电位平衡问题分析

三电平NPC逆变器在实际运行中存在中点电位不平衡的问题,即直流母线电容的电压不一致。中点电位不平衡会导致输出电压不对称,影响逆变器的性能。通过仿真,我们观察到中点电位存在一定的波动,需要采用适当的控制策略来抑制中点电位波动,保证逆变器的正常运行。

[插入图7:中点电位波动波形]

结论

本文基于Simulink平台,搭建了三电平NPC逆变器仿真模型,并研究了PODPWM调制技术在该逆变器中的应用。仿真结果表明,PODPWM调制技术能够有效地降低开关器件的电压应力,降低谐波含量,提高输出电压的品质。然而,三电平NPC逆变器仍然存在中点电位不平衡的问题,需要在实际应用中加以考虑。

展望

未来的研究方向包括:

  • 研究更高级的PWM调制策略,例如SVPWM,以进一步优化谐波性能。

  • 开发有效的中点电位平衡控制策略,提高系统的稳定性。

  • 研究新型三电平NPC逆变器拓扑,例如ANPC等,以进一步提高性能。

  • 进行硬件实验验证,验证仿真模型的准确性。

⛳️ 运行结果

🔗 参考文献

[1] 王世涛.单相NPC级联PWM整流器及其控制研究[D].西南交通大学,2016.

[2] 叶满园.中点嵌位三电平逆变器调制技术的仿真研究[J].沈阳工程学院学报:自然科学版, 2007, 3(3):3.DOI:10.3969/j.issn.1673-1603.2007.03.017.

[3] 李宋.三电平逆变器调制技术研究[J].电力科学与技术学报, 2007, 22(3):4.DOI:10.3969/j.issn.1673-9140.2007.03.014.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值