✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
随着全球气候变化的日益严峻和传统化石能源的逐渐枯竭,以太阳能、风能等为代表的可再生能源正以前所未有的速度发展和普及。然而,可再生能源固有的间歇性、波动性以及并网带来的复杂性,给传统电力系统的运行、控制和保护带来了巨大挑战。微电网作为一种新兴的能源管理模式,能够有效地将分布式可再生能源、储能系统、负荷以及必要控制和保护装置有机地集成起来,在并网和孤岛两种模式下灵活运行,为解决可再生能源大规模并网问题提供了新的思路。
微电网的广泛应用与可再生能源的高渗透率,对传统的电力系统控制和保护策略提出了更高要求。传统的集中式控制和保护系统难以适应微电网内部多种分布式电源的协同运行以及模式切换的复杂性。因此,研究和开发适用于可再生能源与微电网集成的新型控制技术和保护算法,具有至关重要的意义。本文旨在对可再生能源与微电网集成中新控制技术和保护算法的基线、测试以及静态、时域和频率分析进行深入研究,探讨其在提升系统稳定性、可靠性和运行效率方面的作用。
一、可再生能源与微电网集成的挑战
可再生能源与微电网的深度集成带来了诸多技术挑战,主要体现在以下几个方面:
- 波动性与间歇性:
太阳能和风能等可再生能源受天气因素影响,其出力具有显著的波动性和间歇性,可能导致微电网内部电压、频率不稳定。
- 多电源协同控制:
微电网内部包含多种类型的分布式电源(如光伏、风电、储能、柴油发电机等),其特性差异较大,需要协调控制以实现优化运行。
- 孤岛与并网模式切换:
微电网能够在并网和孤岛两种模式下运行,模式切换过程中容易出现暂态问题,需要平滑过渡。
- 复杂的功率流:
微电网内部功率流向复杂多变,既有可再生能源的发电,也有负荷的消耗,还有储能系统的充放电,需要精细的功率管理。
- 保护协调的挑战:
分布式电源的接入改变了故障电流特性,传统的保护装置难以有效配合,可能出现拒动或误动。
- 通信延迟与数据安全:
分布式控制和保护需要依赖通信网络,通信延迟和数据安全问题会影响系统的稳定性和可靠性。
二、新型控制技术研究
为了应对上述挑战,需要开发和应用新型的控制技术。这些技术通常采用分布式或分层控制架构,以更好地协调微电网内部资源的运行。
-
基线控制策略:
- 下垂控制(Droop Control):
作为一种无通信的分布式控制策略,下垂控制通过模拟同步发电机组的下垂特性,根据本地电压和频率的变化来调整分布式电源的出力,实现有功和无功功率的分配。它是微电网孤岛运行模式下的重要控制手段。
- 主从控制(Master-Slave Control):
采用集中式控制架构,将其中一台分布式电源设为主机,负责维持微电网的电压和频率稳定,其他电源作为从机跟随主机运行。这种控制方式简单易实现,但对主机的容量和控制能力要求较高。
- 集中式控制(Centralized Control):
将所有分布式电源和负荷的信息汇集到中央控制器,通过优化算法进行全局协调控制。这种方式能够实现最优运行,但对通信系统的依赖性强,可靠性较低。
- 下垂控制(Droop Control):
-
新型控制技术:
- 模型预测控制(Model Predictive Control, MPC):
基于系统的动态模型,通过预测未来一段时间内的系统状态,并优化控制输入,从而实现最优的控制性能。MPC能够有效处理系统的约束条件和非线性特性,适用于微电网复杂的动态特性。
- 分布式协同控制(Distributed Cooperative Control):
采用多智能体系统理论,通过智能体之间的本地通信和协调,实现微电网的整体目标。这种控制方式具有鲁棒性强、可扩展性好的优点,适用于大规模微电网。
- 基于人工智能的控制:
利用机器学习、深度学习等人工智能技术,对微电网的运行数据进行分析和学习,实现智能化的控制策略。例如,利用强化学习实现微电网的最优调度和能量管理。
- 韧性控制(Resilience Control):
针对微电网在遭受扰动(如网络攻击、自然灾害等)时的运行特性,开发能够快速恢复并保持关键功能的控制策略。
- 模型预测控制(Model Predictive Control, MPC):
-
测试方法:
- 硬件在环(Hardware-in-the-Loop, HIL)仿真:
将部分实际硬件(如控制器)与仿真模型相结合,进行实时仿真测试。HIL仿真能够有效地验证控制算法在真实硬件环境下的性能,缩短开发周期。
- 软件在环(Software-in-the-Loop, SIL)仿真:
在计算机平台上对控制软件和系统模型进行仿真测试。SIL仿真成本较低,适用于算法的初步验证。
- 实际系统测试:
在实际建设的微电网系统中进行现场测试,验证控制策略在真实运行环境下的性能。
- 硬件在环(Hardware-in-the-Loop, HIL)仿真:
三、新型保护算法研究
可再生能源与微电网集成为传统的电力系统保护带来了新的挑战,需要开发适用于其特点的新型保护算法。
-
基线保护原理:
- 过电流保护:
基于线路电流超过预设阈值进行动作,是传统的电流保护方式。
- 电压保护:
基于线路电压超过或低于预设阈值进行动作。
- 频率保护:
基于系统频率偏离正常范围进行动作。
- 过电流保护:
-
新型保护算法:
- 基于阻抗的保护:
利用线路阻抗与故障类型和位置的关系进行故障检测和定位。由于微电网内部阻抗特性复杂,需要考虑分布式电源的接入影响。
- 基于同步向量(Synchrophasor)的保护:
利用PMU获取高精度、同步的电压和电流相量信息,通过分析相量之间的关系进行故障检测和故障定位。
- 基于人工智能的保护:
利用机器学习、深度学习等技术对故障特征进行识别和分类,实现智能化的故障诊断和保护动作。例如,利用支持向量机或神经网络对故障波形进行识别。
- 差动保护:
比较线路两端或设备进出口电流差,当差值超过预设阈值时动作。适用于变压器、母线等设备的保护。
- 故障限流技术:
通过控制分布式电源的逆变器或采用故障限流装置,限制故障电流的大小,减轻故障对系统的影响。
- 基于阻抗的保护:
-
保护协调:
- 自适应保护:
根据微电网的运行模式和系统状态,动态调整保护装置的整定值和动作逻辑,实现保护的优化配合。
- 基于通信的保护协调:
利用通信网络实现保护装置之间的信息交换和协调,提高保护系统的可靠性和选择性。
- 自适应保护:
-
测试方法:
- 离线仿真:
利用电力系统仿真软件(如PSCAD/EMTDC, MATLAB/Simulink)建立微电网模型,进行故障模拟和保护算法验证。
- 实时数字仿真器(Real-Time Digital Simulator, RTDS)测试:
利用RTDS平台模拟微电网的动态行为,并将保护装置接入进行实时测试。RTDS能够模拟复杂的暂态过程,为保护算法的验证提供高精度平台。
- 实际系统故障测试:
在实际微电网系统中进行人工故障或自然故障测试,验证保护装置的动作性能。
- 离线仿真:
四、静态、时域和频率分析研究
对可再生能源与微电网集成的控制和保护系统进行全面的性能评估,需要进行静态、时域和频率分析。
-
静态分析:
- 潮流计算:
分析微电网在稳态运行下的功率流向、电压和电流分布,评估系统的运行裕度。
- 短路电流计算:
计算微电网在不同故障类型和位置下的短路电流,为保护装置的整定提供依据。由于分布式电源的接入会影响短路电流特性,需要采用适用于含分布式电源的短路电流计算方法。
- 潮流计算:
-
时域分析:
- 暂态稳定性分析:
分析微电网在遭受大扰动(如故障、负荷突变等)后的动态响应,评估系统恢复稳定状态的能力。主要关注电压、频率的波动以及分布式电源的同步特性。
- 控制系统动态响应分析:
分析新型控制算法在应对各种扰动时的动态响应,如对太阳能和风能出力波动的响应、对负荷变化的响应以及对孤岛/并网模式切换的响应。
- 保护系统动作特性分析:
模拟各种故障场景,分析新型保护算法的动作时间和动作选择性。
- 暂态稳定性分析:
-
频率分析:
- 特征值分析:
分析微电网系统的特征值,评估系统的振荡模式和稳定性裕度。分布式电源的接入可能会引入新的振荡模式。
- 频率响应分析:
分析微电网在不同频率扰动下的响应,评估系统对频率变化的敏感性以及频率控制的有效性。
- 功率谱分析:
分析微电网信号的功率谱,识别系统中的振荡频率和幅值,为控制和保护系统的优化提供依据。
- 特征值分析:
五、研究方法和流程
对可再生能源与微电网集成中的新控制技术和保护算法进行研究,通常遵循以下流程:
- 系统建模:
根据实际微电网结构和设备参数,建立详细的数学模型或仿真模型。模型应包含分布式电源(如光伏、风电、储能、柴油发电机)、逆变器、负荷、线路、变压器以及控制和保护装置等。
- 基线研究:
对现有成熟的控制策略(如下垂控制、主从控制)和保护原理(如过电流保护)进行理论分析和仿真测试,建立性能基线。
- 新型技术开发:
针对微电网面临的具体问题,开发新的控制技术和保护算法。这可能包括算法理论研究、控制器或保护装置的设计。
- 性能测试与评估:
利用仿真平台(如离线仿真、实时数字仿真器)或实际微电网系统,对新型控制技术和保护算法进行全面的性能测试。测试应涵盖静态、时域和频率分析,并与基线性能进行对比。
- 优化与改进:
根据测试结果,对新型控制技术和保护算法进行优化和改进,提升其性能和可靠性。
- 鲁棒性与适应性分析:
分析新型控制和保护算法在不同运行模式、不同故障类型、不同系统参数以及存在通信延迟等情况下的鲁棒性和适应性。
六、未来研究方向
可再生能源与微电网集成的控制和保护技术仍有许多值得深入研究的方向:
- 网络安全与韧性:
随着信息技术在微电网中的广泛应用,网络攻击对控制和保护系统的威胁日益增加。研究如何提升微电网控制和保护系统的网络安全和韧性是未来的重要方向。
- 多微电网协调控制与保护:
多个微电网之间的互联和协调运行将是未来的发展趋势。研究多微电网的协调控制和跨区域保护算法具有重要意义。
- 考虑不确定性的控制与保护:
可再生能源出力和负荷具有不确定性,研究如何在不确定环境下设计鲁棒的控制和保护策略。
- 基于数据驱动的控制与保护:
利用大数据和人工智能技术,挖掘微电网运行数据中的潜在规律,开发数据驱动的控制和保护算法。
- 标准与规范的制定:
随着新型控制和保护技术的应用,需要制定相应的技术标准和规范,规范微电网的设计、建设和运行。
结论
可再生能源与微电网集成是未来智能电网发展的重要方向,对其控制和保护技术的研究至关重要。本文对可再生能源与微电网集成中新控制技术和保护算法的基线、测试以及静态、时域和频率分析进行了全面的探讨。通过深入研究新型控制策略(如MPC、分布式协同控制、AI控制)和保护算法(如基于阻抗、基于同步向量、AI保护),并利用先进的仿真和测试平台进行性能评估,能够有效提升微电网的稳定性、可靠性和运行效率。未来的研究应继续关注网络安全、多微电网协调、不确定性处理以及数据驱动技术在控制和保护领域的应用,为构建更加安全、可靠、高效的电力系统做出贡献。
⛳️ 运行结果
🔗 参考文献
[1] 李军.微电网运行控制与保护若干关键问题研究[D].东南大学,2012.DOI:10.7666/d.Y2272857.
[2] 王颖.微电网故障检测方法及保护原理研究[D].浙江大学,2017.DOI:CNKI:CDMD:1.1018.077201.
[3] 李琳.基于膜优化算法的直流微电网协调控制研究[D].西华大学,2023.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇