使用 1D 霍夫变换的椭圆检测研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

图像处理领域中,目标检测是一项核心任务,其中对特定形状物体的识别尤为重要。椭圆作为一种常见的几何形状,广泛存在于自然界和人造物体中,例如车轮、硬币、细胞核等。有效的椭圆检测技术在工业自动化、医学影像分析、计算机视觉等多个领域具有重要的应用价值。传统的椭圆检测方法通常基于边缘检测和参数空间投票,例如标准的霍夫变换。然而,标准的霍夫变换在处理具有五个参数(中心点x坐标、中心点y坐标、长轴、短轴和旋转角度)的椭圆时,会面临高维参数空间带来的计算复杂性和存储开销巨大的问题。为了克服这些挑战,研究人员提出了各种改进的霍夫变换方法,其中基于 1D 霍夫变换的椭圆检测方法凭借其降低维度的优势,受到了广泛关注。本文旨在对使用 1D 霍夫变换的椭圆检测方法进行深入研究,探讨其原理、实现细节、优缺点以及未来发展方向。

一维霍夫变换的原理与应用

标准的霍夫变换是一种将图像空间中的点映射到参数空间中的曲线,并通过参数空间中曲线的交点来检测图像中特定形状的方法。对于二维直线,参数空间是二维的;对于圆,参数空间是三维的。然而,对于椭圆,其参数空间是五维的,这使得标准的霍夫变换在计算和存储上变得不可行。

一维霍夫变换的基本思想是将高维参数空间的投票过程分解为多个独立的低维投票过程。对于椭圆检测而言,这意味着不再一次性寻找所有五个参数,而是通过多个步骤,每次只对部分参数进行投票。通过巧妙地构建中间参数空间,可以将原本五维的投票分解为几次一维或二维的投票,从而显著降低计算复杂度和存储需求。

基于 1D 霍夫变换的椭圆检测方法通常遵循以下基本流程:

  1. 边缘检测与梯度计算:

    首先对输入图像进行边缘检测,提取图像中的边缘像素。常用的边缘检测算子包括 Canny、Sobel 等。同时,计算边缘像素处的梯度方向和梯度幅值,这些信息对于后续的参数投票至关重要。

  2. 局部特征提取与预处理:

    在边缘像素的基础上,可能会进行一些预处理步骤,例如非极大值抑制、边缘连接等,以获取更可靠的边缘段。一些方法还会利用边缘点的局部特征,如曲率,来缩小搜索空间。

  3. 基于局部信息的参数估计与投票:

    这是 1D 霍夫变换的核心。不同的 1D 霍夫变换方法在此步骤有所差异。一些方法可能会先利用边缘点的梯度信息来估计部分参数,例如椭圆中心的可能位置。例如,对于边缘点 (x, y),其梯度方向垂直于椭圆在该点的切线方向。通过连接位于同一椭圆上的两个边缘点,并利用其梯度方向信息,可以对椭圆中心的位置进行初步估计。另一种常见的思路是利用边缘点及其局部邻域的信息来构建 1D 投票空间。例如,考虑一个边缘点及其沿着梯度方向的一段线段,这条线段与所有可能经过该边缘点的椭圆的某些参数存在关联。通过遍历所有可能的参数取值范围,并计算该边缘点对每个参数值的贡献,即可在一个 1D 参数空间中进行投票。

  4. 参数组合与验证:

    在完成低维参数空间的投票后,需要将不同的参数估计结果进行组合,形成完整的椭圆参数候选集。这些候选集可能需要进一步的验证步骤来过滤掉虚假的检测结果。验证通常通过在原始图像上绘制检测到的椭圆,并检查其与边缘像素的吻合程度来进行。

具体的 1D 霍夫变换算法多种多样,例如:

  • 基于中心投票的方法:

    这类方法首先尝试估计椭圆的中心位置。利用边缘点的梯度信息,可以确定边缘点可能属于哪些以特定点为中心的椭圆。通过对所有边缘点的贡献进行累加,可以在中心点 (xc, yc) 的二维空间进行投票。一旦中心点确定,后续就可以利用其他参数(长短轴和角度)在低维空间进行投票。

  • 基于轴投票的方法:

    这类方法可能会先估计椭圆的长轴或短轴。例如,对于两个对称的边缘点,它们之间的连线可能与椭圆的某个轴平行或重合。通过对这些轴进行投票,可以缩小对其他参数的搜索范围。

  • 基于局部切线交点的方法:

    这类方法利用椭圆上不同点的切线属性。对于椭圆上的任意两点,其切线在某个位置相交。通过计算边缘点处的切线,并考虑所有可能的切线交点,可以在参数空间中进行投票。一些方法将这个过程分解为多个步骤,例如先估计轴方向,再估计其他参数。

1D 霍夫变换的优势

相较于标准的五维霍夫变换,基于 1D 霍夫变换的椭圆检测方法具有以下显著优势:

  • 降低计算复杂度:

    将高维投票分解为低维投票显著降低了计算量。原本指数级的计算复杂度被降低为多项式级别,使得椭圆检测在合理的时间内完成成为可能。

  • 减少存储开销:

    投票空间的维度降低直接减少了所需的内存。标准的五维霍夫累加器需要巨大的内存,而 1D 霍夫变换则只需要存储多个低维累加器,显著节省了存储空间。

  • 鲁棒性提高:

    在某些 1D 霍夫变换方法中,通过利用局部特征和边缘点的梯度信息,可以提高对噪声和部分遮挡的鲁棒性。局部信息的使用可以减少错误投票的影响。

  • 可并行性:

    1D 霍夫变换的投票过程通常可以并行执行,这使得利用多核处理器或GPU进行加速成为可能,进一步提高了检测效率。

1D 霍夫变换的局限性

尽管 1D 霍夫变换在椭圆检测中表现出色,但也存在一些局限性:

  • 参数空间量化误差:

    与标准的霍夫变换一样,1D 霍夫变换也需要对参数空间进行量化。量化步长的大小会影响检测精度和漏检率。步长过大可能导致精度下降,步长过小则会增加计算量。

  • 对边缘质量的依赖:

    1D 霍夫变换依赖于准确的边缘检测和梯度信息。图像质量较差、噪声较大或边缘模糊的图像会影响边缘的提取和梯度计算,从而影响投票的准确性。

  • 复杂算法设计:

    设计高效的 1D 霍夫变换算法需要对椭圆的几何性质有深入的理解,并巧妙地构建低维参数空间和投票策略。算法设计相对复杂,不同的方法适用于不同类型的图像和应用场景。

  • 局部极值问题:

    在参数空间的投票过程中,可能会出现多个局部投票峰值,导致检测到虚假的椭圆。需要有效的后处理和验证步骤来过滤掉这些假阳性结果。

  • 对部分遮挡的敏感性:

    虽然一些 1D 霍夫变换方法对部分遮挡具有一定的鲁棒性,但严重的遮挡仍然会使得边缘信息不完整,从而影响参数的准确估计和投票。

未来发展方向

基于 1D 霍夫变换的椭圆检测技术仍在不断发展和完善中。未来的研究方向可以包括:

  • 与其他特征结合:

    将 1D 霍夫变换与其他图像特征(如颜色、纹理等)结合,构建多特征融合的椭圆检测系统,以提高鲁棒性和准确性。

  • 自适应参数量化:

    研究自适应的参数空间量化方法,根据图像内容和噪声水平动态调整量化步长,以平衡精度和计算效率。

  • 深度学习与 1D 霍夫变换的结合:

    探索将深度学习技术应用于 1D 霍夫变换的各个环节,例如利用深度学习进行更精确的边缘检测和梯度估计,或者利用深度学习模型预测椭圆的粗略参数范围,缩小 1D 霍夫变换的搜索空间。

  • 面向特定应用的优化:

    针对特定应用场景(如医学影像、工业检测等)对 1D 霍夫变换算法进行优化,考虑实际应用中的图像特点和检测需求。

  • 实时性改进:

    利用并行计算技术(如 GPU 加速)进一步提高 1D 霍夫变换的计算效率,实现实时或近实时的椭圆检测。

  • 三维椭球检测的扩展:

    将 1D 霍夫变换的思想扩展到三维空间,研究基于 1D 霍夫变换的三维椭球检测方法。

结论

基于 1D 霍夫变换的椭圆检测方法通过将高维参数空间的投票分解为低维过程,有效地克服了标准霍夫变换在处理椭圆时面临的计算和存储难题。其降低计算复杂度和存储开销的优势使其成为椭圆检测领域中一种重要的技术手段。尽管存在对边缘质量敏感、算法设计复杂等局限性,但通过不断的研究和改进,例如与其他特征融合、引入自适应量化以及结合深度学习等,1D 霍夫变换在椭圆检测中的应用前景依然广阔。未来的研究将继续致力于提高其鲁棒性、准确性和实时性,使其在更广泛的图像处理应用中发挥更大的作用。随着技术的不断进步,我们有理由相信基于 1D 霍夫变换的椭圆检测技术将为各种需要识别和定位椭圆形状的应用提供更高效和可靠的解决方案。

⛳️ 运行结果

🔗 参考文献

[1] 牛晓霞,胡正平,杨苏.局部PCA参数约束的Hough多椭圆分层检测算法[J].计算机应用, 2009, 29(05):1365-1368.DOI:10.3321/j.issn:1001-9014.2000.01.010.

[2] 王长元,张景,李京京.瞳孔中心快速定位方法研究[J].计算机工程与应用, 2011, 47(24):4.DOI:10.3778/j.issn.1002-8331.2011.24.055.

[3] 陈余根,杨艳.基于霍夫变换椭圆检测的两种改进算法简[J].半导体光电, 2017, 38(5):6.DOI:10.16818/j.issn1001-5868.2017.05.026.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值