Zernike 多项式在圆形、六边形、椭圆形、矩形或环形瞳孔上应用附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

Zernike 多项式作为一种完备的正交函数集,在光学领域中常用于描述光学系统的像差。传统上,Zernike 多项式多应用于圆形瞳孔的光学系统,但随着光学技术的发展,六边形、椭圆形、矩形、环形等非圆形瞳孔的光学系统也逐渐得到广泛应用。在不同形状的瞳孔上应用 Zernike 多项式,能够更准确地分析和校正光学系统的像差,提高成像质量。本文将详细探讨 Zernike 多项式在圆形、六边形、椭圆形、矩形和环形瞳孔上的应用。

二、Zernike 多项式基本理论

图片

三、Zernike 多项式在圆形瞳孔上的应用

(一)应用特点

圆形瞳孔是 Zernike 多项式应用最广泛的形状。由于 Zernike 多项式本身是基于圆形区域定义的,所以在圆形瞳孔上应用时,其正交性和完备性能够得到充分保证,计算相对简单且准确。圆形瞳孔上的 Zernike 多项式可以准确描述常见的像差类型,如球差、彗差、像散等,是其他形状瞳孔应用的基础。

图片

四、Zernike 多项式在六边形瞳孔上的应用

(一)应用特点

六边形瞳孔在一些特殊的光学系统中,如某些昆虫复眼仿生光学系统、天文望远镜的自适应光学系统等会出现。与圆形瞳孔不同,六边形瞳孔不满足 Zernike 多项式的原始定义域,因此在应用时需要对 Zernike 多项式进行适当的修正或扩展,以保证其正交性和完备性,从而准确描述六边形瞳孔上的像差。

(二)计算方法

一种常用的方法是将六边形瞳孔映射到圆形区域,然后在圆形区域上使用 Zernike 多项式进行计算,最后再将结果映射回六边形瞳孔。具体映射过程需要考虑六边形的几何特性,通过合适的坐标变换实现。另一种方法是构造适用于六边形区域的正交多项式基,这些多项式基需要满足六边形区域的边界条件和正交性要求,但这种方法相对复杂,计算量较大。

(三)实际案例

在天文望远镜的自适应光学系统中,为了提高系统的成像性能和抗干扰能力,有时会采用六边形瞳孔设计。通过应用 Zernike 多项式对六边形瞳孔上的像差进行分析和校正,可以有效补偿大气湍流等因素引起的像差,提高望远镜的观测分辨率和图像质量。

五、Zernike 多项式在椭圆形瞳孔上的应用

(一)应用特点

椭圆形瞳孔在一些特殊的光学仪器和生物视觉系统中较为常见。由于椭圆形的形状与圆形不同,其几何特性会影响 Zernike 多项式的应用。在椭圆形瞳孔上应用 Zernike 多项式时,需要考虑椭圆的长轴、短轴以及离心率等参数,以准确描述像差。

(二)计算方法

与六边形瞳孔类似,可以通过坐标变换将椭圆形瞳孔映射到圆形区域,再使用 Zernike 多项式进行计算。常用的坐标变换方法有保角变换等,将椭圆变换为单位圆,同时对 Zernike 多项式进行相应的变换。此外,也可以直接构造适用于椭圆形区域的正交多项式,但这需要更深入的数学推导和计算。

(三)实际案例

在某些生物视觉系统的研究中,如某些鸟类的眼睛具有椭圆形瞳孔。通过应用 Zernike 多项式分析椭圆形瞳孔上的像差,可以更好地理解生物视觉系统的成像机制,为仿生光学设计提供理论依据。在光学仪器设计中,对于一些特殊用途的镜头,如需要特定视场和像差特性的镜头,采用椭圆形瞳孔设计并应用 Zernike 多项式进行像差分析和校正,能够满足特殊的光学性能要求。

六、Zernike 多项式在矩形瞳孔上的应用

(一)应用特点

矩形瞳孔在一些微光学系统、阵列光学系统以及部分成像设备中会出现。矩形瞳孔的直角边界与圆形瞳孔的连续曲线边界有很大差异,使得在应用 Zernike 多项式时面临挑战。由于 Zernike 多项式在矩形区域内不再具有正交性,需要采用特殊的方法进行处理。

(二)计算方法

一种常见的方法是将矩形区域划分为多个子区域,在每个子区域内近似使用 Zernike 多项式进行计算,然后将各子区域的结果进行融合。另一种方法是构造适用于矩形区域的正交多项式基,如使用三角函数或其他函数组合来构建完备的正交函数集,替代 Zernike 多项式进行像差描述和分析。

(三)实际案例

在微光学阵列系统中,每个微透镜单元可能具有矩形瞳孔。通过应用 Zernike 多项式或其改进方法对矩形瞳孔上的像差进行分析和校正,可以提高微光学阵列系统的整体成像质量和性能一致性。在一些特殊的成像设备,如某些工业检测相机中,采用矩形瞳孔设计并进行像差分析,能够满足特定的检测精度要求。

七、Zernike 多项式在环形瞳孔上的应用

(一)应用特点

环形瞳孔在一些特殊的光学系统,如共焦显微镜、环形激光束传输系统等中具有独特的应用。环形瞳孔的中空结构使得其像差特性与圆形、六边形等瞳孔有很大不同,在应用 Zernike 多项式时需要考虑环形区域的特殊性。

(二)计算方法

可以基于环形区域的几何特性,对 Zernike 多项式进行扩展或修改。一种方法是在环形区域内重新定义正交多项式基,使其满足环形区域的边界条件和正交性要求;另一种方法是通过坐标变换将环形区域映射到其他便于计算的区域,然后使用相应的多项式进行计算,最后再将结果转换回环形区域。

(三)实际案例

在共焦显微镜中,环形瞳孔能够提高系统的轴向分辨率和对比度。通过应用 Zernike 多项式对环形瞳孔上的像差进行分析和校正,可以进一步优化共焦显微镜的成像性能,提高对微小结构的观测能力。在环形激光束传输系统中,分析和校正环形瞳孔上的像差有助于保证激光束的质量和传输稳定性,提高激光加工、激光通信等应用的效果。

八、结论

Zernike 多项式在圆形、六边形、椭圆形、矩形和环形等不同形状的瞳孔上均有重要应用,但由于各形状瞳孔的几何特性不同,其应用方式和计算方法存在差异。在实际应用中,需要根据具体的瞳孔形状和光学系统要求,选择合适的方法应用 Zernike 多项式,以准确描述和校正像差,提高光学系统的性能和成像质量。随着光学技术的不断发展,对不同形状瞳孔上 Zernike 多项式应用的研究将不断深入,为光学系统的设计和优化提供更有力的理论支持和技术手段。

⛳️ 运行结果

图片

🔗 参考文献

[1] 屈金祥.Zernike多项式及其在低温光学中的应用[C]//全国低温与制冷工程大会.2005.

[2] 杨佳文%黄巧林%韩友民.Zernike多项式在拟合光学表面面形中的应用及仿真[J].航天返回与遥感, 2010(5):31.

[3] 杨佳文,黄巧林,韩友民.Zernike多项式在拟合光学表面面形中的应用及仿真[J].航天返回与遥感, 2010(5):7.DOI:10.3969/j.issn.1009-8518.2010.05.009.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值