石子合并问题
Time Limit: 1000 ms
Memory Limit: 65536 KiB
Problem Description
在一个圆形操场的四周摆放着n堆石子。现要将石子有次序地合并成一堆。规定每次只能选相邻的2 堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的得分。试设计一个算法,计算出将n堆石子合并成一堆的最小得分和最大得分。
对于给定n堆石子,计算合并成一堆的最小得分和最大得分。
对于给定n堆石子,计算合并成一堆的最小得分和最大得分。
Input
输入数据的第1行是正整数n,1≤n≤100,表示有n堆石子。第二行有n个数,分别表示每堆石子的个数。
Output
输出数据有两行,第1行中的数是最小得分,第2行中的数是最大得分。
Sample Input
4 4 4 5 9
Sample Output
43 54
Hint
#include <iostream>
using namespace std;
#define N 101
int getmin(int s[N], int n)
{
int m[N][N];
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
m[i][j] = -1;
int min = 0;
for (int i = 1; i <= n; i++) 当一个单独合并时,m[i][i]设为0,表示没有石子
m[i][i] = 0;
for (int r = 2; r <= n; r++) //当相邻的2堆以及到最后的n堆时,执行以下循环
{
for (int i = 1; i <= n - r + 1; i++)
{
int j = i + r - 1; //j总是距离i r-1的距离
int sum = 0;
for (int k = i; k <= j; k++) //当i到j堆石子合并时最后里面的石子数求和得sum
sum += s[k];
m[i][j] = m[i + 1][j] + sum;
// 此时m[i][j]为i~j堆石子间以m[i][i]+m[i+1][j]+sum结果,这是其中一种可能,不一定是最优
//第一个单独一组,其他组合
//下面的for循环是其他的可能
for (int k = i + 1; k < j; k++)
{
int t = m[i][k] + m[k + 1][j] + sum;
;
if (t < m[i][j])
m[i][j] = t;
}
}
}
min = m[1][n];
return min;
}
int getmax(int s[N], int n)
{
int m[N][N];
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
m[i][j] = -1;
int max = 0;
for (int i = 1; i <= n; i++) 当一个单独合并时,m[i][i]设为0,表示没有石子
m[i][i] = 0;
for (int r = 2; r <= n; r++) //当相邻的2堆以及到最后的n堆时,执行以下循环
{
for (int i = 1; i <= n - r + 1; i++)
{
int j = i + r - 1; //j总是距离i r-1的距离
int sum = 0;
for (int k = i; k <= j; k++) //当i到j堆石子合并时最后里面的石子数求和得sum
sum += s[k];
m[i][j] = m[i + 1][j] + sum;
// 此时m[i][j]为i~j堆石子间以m[i][i]+m[i+1][j]+sum结果,这是其中一种可能,不一定是最优
//第一个单独一组,其他组合
//下面的for循环是其他的可能
for (int k = i + 1; k < j; k++)
{
int t = m[i][k] + m[k + 1][j] + sum;
;
if (t > m[i][j])
m[i][j] = t;
}
}
}
max = m[1][n];
return max;
}
int main()
{
int min = 0;
int max = 0;
int s[N];
int n;
cin >> n;
for (int i = 1; i <= n; i++)
cin >> s[i];
min = getmin(s, n);
max = getmax(s, n);
//因为题目要求圆的原因,要把所有情况都要考虑到,总共有n种情况。
for (int i = 1; i <= n - 1; i++)
{
int min_cache = 0;
int max_cache = 0;
//循环换头和尾
int cache = s[1];
for (int j = 2; j <= n; j++)
s[j - 1] = s[j];
s[n] = cache;
min_cache = getmin(s, n);
max_cache = getmax(s, n);
if (min_cache < min)
min = min_cache;
if (max < max_cache)
max = max_cache;
}
cout << min << endl;
cout << max << endl;
return 0;
}