石子合并问题

石子合并问题

Time Limit: 1000 ms  Memory Limit: 65536 KiB
Problem Description
在一个圆形操场的四周摆放着n堆石子。现要将石子有次序地合并成一堆。规定每次只能选相邻的2 堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的得分。试设计一个算法,计算出将n堆石子合并成一堆的最小得分和最大得分。
对于给定n堆石子,计算合并成一堆的最小得分和最大得分。
Input
输入数据的第1行是正整数n,1≤n≤100,表示有n堆石子。第二行有n个数,分别表示每堆石子的个数。
Output
输出数据有两行,第1行中的数是最小得分,第2行中的数是最大得分。
Sample Input
4
4 4 5 9
Sample Output
43
54
Hint
#include <iostream>
using namespace std;
#define N 101

int getmin(int s[N], int n)
{
    int m[N][N];
    for (int i = 1; i <= n; i++)
        for (int j = 1; j <= n; j++)
            m[i][j] = -1;
    int min = 0;
    for (int i = 1; i <= n; i++) 当一个单独合并时,m[i][i]设为0,表示没有石子
        m[i][i] = 0;
    for (int r = 2; r <= n; r++) //当相邻的2堆以及到最后的n堆时,执行以下循环
    {
        for (int i = 1; i <= n - r + 1; i++)
        {
            int j = i + r - 1; //j总是距离i   r-1的距离
            int sum = 0;

            for (int k = i; k <= j; k++) //当i到j堆石子合并时最后里面的石子数求和得sum
                sum += s[k];

            m[i][j] = m[i + 1][j] + sum;
            // 此时m[i][j]为i~j堆石子间以m[i][i]+m[i+1][j]+sum结果,这是其中一种可能,不一定是最优
            //第一个单独一组,其他组合
            //下面的for循环是其他的可能
            for (int k = i + 1; k < j; k++)
            {
                int t = m[i][k] + m[k + 1][j] + sum;
                ;
                if (t < m[i][j])
                    m[i][j] = t;
            }
        }
    }
    min = m[1][n];
    return min;
}

int getmax(int s[N], int n)
{
    int m[N][N];
    for (int i = 1; i <= n; i++)
        for (int j = 1; j <= n; j++)
            m[i][j] = -1;
    int max = 0;
    for (int i = 1; i <= n; i++) 当一个单独合并时,m[i][i]设为0,表示没有石子
        m[i][i] = 0;
    for (int r = 2; r <= n; r++) //当相邻的2堆以及到最后的n堆时,执行以下循环
    {
        for (int i = 1; i <= n - r + 1; i++)
        {
            int j = i + r - 1; //j总是距离i   r-1的距离
            int sum = 0;

            for (int k = i; k <= j; k++) //当i到j堆石子合并时最后里面的石子数求和得sum
                sum += s[k];

            m[i][j] = m[i + 1][j] + sum;
            // 此时m[i][j]为i~j堆石子间以m[i][i]+m[i+1][j]+sum结果,这是其中一种可能,不一定是最优
            //第一个单独一组,其他组合
            //下面的for循环是其他的可能
            for (int k = i + 1; k < j; k++)
            {
                int t = m[i][k] + m[k + 1][j] + sum;
                ;
                if (t > m[i][j])
                    m[i][j] = t;
            }
        }
    }
    max = m[1][n];
    return max;
}

int main()
{
    int min = 0;
    int max = 0;
    int s[N];
    int n;
    cin >> n;
    for (int i = 1; i <= n; i++)
        cin >> s[i];
    min = getmin(s, n);
    max = getmax(s, n);

    //因为题目要求圆的原因,要把所有情况都要考虑到,总共有n种情况。
    for (int i = 1; i <= n - 1; i++)
    {
        int min_cache = 0;
        int max_cache = 0;

        //循环换头和尾
        int cache = s[1];
        for (int j = 2; j <= n; j++)
            s[j - 1] = s[j];
        s[n] = cache;

        min_cache = getmin(s, n);
        max_cache = getmax(s, n);

        if (min_cache < min)
            min = min_cache;
        if (max < max_cache)
            max = max_cache;
    }

    cout << min << endl;
    cout << max << endl;

    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值