动态规划——区间dp [石子合并]

动态规划是一种通过子问题求解原问题的方法,适用于有重叠子问题和最优子结构的问题。区间DP是其应用之一,常用于区间操作问题。本文以石子合并为例,介绍如何使用区间DP解决这类问题,包括定义、应用、状态转移方程和代码详解,展示了如何计算最小和最大得分。
摘要由CSDN通过智能技术生成

在这里插入图片描述

什么是动态规划

动态规划(dp)是一种通过将问题分解为子问题,并利用已解决的子问题的解来求解原问题的方法。适用于具有重叠子问题和最优子结构性质的优化问题。通过定义状态和状态转移方程,动态规划可以在避免重复计算的同时找到问题的最优解,是一种高效的求解方法,常用于解决各种问题,如最短路径、背包问题、序列比对等。


区间dp

在这里插入图片描述

定义

区间dp是一种dp的应用,用于解决涉及区间的问题。
它将问题划分为若干个子区间,并通过定义状态和状态转移方程来求解每个子区间的最优解,最终得到整个区间的最优解。


应用

区间动态规划常用于解决一些涉及区间操作的问题,如最长公共子序列、最长回文子串等。在区间动态规划中,通常需要定义一个二维数组来表示子区间的状态,

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Sirius·Black

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值