3.华容道
(puzzle.cpp/c/pas)
【问题描述】
小 B 最近迷上了华容道,可是他总是要花很长的时间才能完成一次。于是,他想到用
编程来完成华容道:给定一种局面,华容道是否根本就无法完成,如果能完成,最少需要多
少时间。
小 B玩的华容道与经典的华容道游戏略有不同,游戏规则是这样的:
1. 在一个 n*m 棋盘上有 n*m 个格子,其中有且只有一个格子是空白的,其余 n*m-1
个格子上每个格子上有一个棋子,每个棋子的大小都是 1*1 的;
2. 有些棋子是固定的,有些棋子则是可以移动的;
3. 任何与空白的格子相邻(有公共的边)的格子上的棋子都可以移动到空白格子上。
游戏的目的是把某个指定位置可以活动的棋子移动到目标位置。
给定一个棋盘,游戏可以玩q次,当然,每次棋盘上固定的格子是不会变的,但是棋盘
上空白的格子的初始位置、指定的可移动的棋子的初始位置和目标位置却可能不同。第i次
玩的时候, 空白的格子在第EXi行第EYi列,指定的可移动棋子的初始位置为第SXi行第SYi
列,目标位置为第TXi行第TYi列。
假设小 B 每秒钟能进行一次移动棋子的操作,而其他操作的时间都可以忽略不计。请
你告诉小B 每一次游戏所需要的最少时间,或者告诉他不可能完成游戏。
【输入】
输入文件为puzzle.in。
第一行有3个整数,每两个整数之间用一个空格隔开,依次表示n、m和 q;
接下来的n行描述一个 n*m的棋盘,每行有 m个整数,每两个整数之间用一个空格隔
开,每个整数描述棋盘上一个格子的状态,0 表示该格子上的棋子是固定的,1 表示该格子
上的棋子可以移动或者该格子是空白的。
接下来的 q 行,每行包含 6 个整数依次是 EXi、EYi、SXi、SYi、TXi、TYi,每两个整
数之间用一个空格隔开,表示每次游戏空白格子的位置,指定棋子的初始位置和目标位置。
【输出】
输出文件名为puzzle.out。
输出有q行,每行包含 1个整数,表示每次游戏所需要的最少时间,如果某次游戏无法
完成目标则输出−1。
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int n,m;
int xx[4]={0,0,1,-1},yy[4]={1,-1,0,0};
int map[31][31];
bool sign[31][31][31][31];
struct data{
int x,y,ex,ey,step;
}q[810001];
bool jud(int x,int y,int kx,int ky){
if(x<1||y<1||x>n||y>m||map[kx][ky]==0||map[x][y]==0) return false;
if(sign[x][y][kx][ky]==true) return false;
sign[x][y][kx][ky]=true;
return true;
}
void bfs(){
int tx,ty;
scanf("%d%d%d%d%d%d",&q[0].ex,&q[0].ey,&q[0].x,&q[0].y,&tx,&ty);
memset(sign,0,sizeof(sign));
sign[q[0].x][q[0].y][q[0].ex][q[0].ey]=true;
if(q[0].x==tx&&q[0].y==ty) {
printf("0\n");
return;
}
q[0].step=0;
int t=0,w=0;
while(t<=w){
for(int i=0;i<4;i++){{
int kx=q[t].ex+xx[i],ky=q[t].ey+yy[i];
int x=q[t].x,y=q[t].y;
if(kx==x&&ky==y) x=q[t].ex,y=q[t].ey;
if(jud(x,y,kx,ky)){
w++;
q[w].x=x;
q[w].y=y;
q[w].ex=kx;
q[w].ey=ky;
q[w].step=q[t].step+1;
if(x==tx&&y==ty) {
printf("%d\n",q[w].step);
return ;
}
}
}
}
t++;
}
printf("-1\n");
}
int main(){
int q;
freopen("puzzle.in","r",stdin);
freopen("puzzle.out","w",stdout);
scanf("%d%d%d",&n,&m,&q);
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
scanf("%d",&map[i][j]);
}
}
for(int i=1;i<=q;i++) bfs();
return 0;
}