关于圆锥曲线切点弦二级结论的总结与再发现

就在高考前几天经由同学的提问(校二检)对切点弦有了进一步的认识

趁现在还记得赶紧写篇blog把这个高度统一完美的结论记下来

 

先回顾一下高中所学的圆的切点弦的相关性质

对于某个圆心为原点的圆  x^{2}+y^{2}=r^{2}

1.若点P\left ( x_{0}, y_{0}\right )在圆上,过该点作圆的切线,则切线的直线方程为x_{0}x+y_{0}y=r^{2}

证明:可对x^{2}+y^{2}=r^{2}左右关于x,y求导:2x*dx+2y*dy=0  得到  k=dy/dx=-x0/y0(隐函数求导)

带入点斜式化简得到上式;

2.若点P\left ( x_{0}, y_{0}\right )在圆外,过该点作圆的两条切线PM、PN,则MN所在直线方程为x_{0}x+y_{0}y=r^{2}

证明:不妨设M\left ( x_{1},y_{1}\right ),N( x_{2},y_{2}),由1 得  PM:x_{1}x+y_{1}y=r^{2},     PN:x_{2}x+y_{2}y=r^{2}

由于P在PM、PN上,满足:x_{1}x_{0}+y_{1}y_{0}=r^{2}    、   x_{2}x_{0}+y_{2}y_{0}=r^{2}

说明M\left ( x_{1},y_{1}\right ),N( x_{2},y_{2})均满足直线x_{0}x+y_{0}y=r^{2},且该直线唯一

所以MN所在直线方程为x_{0}x+y_{0}y=r^{2},得证。

 

对于一般的圆,平移即可,不再赘述。

对于一般的圆锥曲线,也有如下结论:

1.若点P\left ( x_{0}, y_{0}\right )在曲线\frac{x^{2}}{a^{2}}\pm \frac{y^{2}}{b^{2}}=1上,过该点作曲线的切线,则切线的直线方程为\frac{x_{0}x}{a^{2}}\pm \frac{y_{0}y}{b^{2}}=1

   若点P\left ( x_{0}, y_{0}\right )在曲线y^{2}=2px上,过该点作曲线的切线,则切线的直线方程为y_{0}y=p(x+x_{0})

 2.若点P\left ( x_{0}, y_{0}\right )在曲线\frac{x^{2}}{a^{2}}\pm \frac{y^{2}}{b^{2}}=1外,过该点作曲线的两条切线PM、PN,则MN所在直线方程为\frac{x_{0}x}{a^{2}}\pm \frac{y_{0}y}{b^{2}}=1

    若点P\left ( x_{0}, y_{0}\right )在曲线y^{2}=2px外,过该点作曲线的两条切线PM、PN,则MN所在直线方程为y_{0}y=p(x+x_{0})

证明类似,不在赘述。

对于椭圆还可以用伸缩变换来理解(伸缩变换不改变相对位置关系,即相交,平行,相切;若斜率乘积为定值,定值改变)

 

上面这些都是老生常谈了,老师也讲了N遍了,没什么新意

但是相信同学学到这里都会有一个疑问:

若点P\left ( x_{0}, y_{0}\right )在圆内呢,带入结论所得直线与点P有没有什么联系?

这个问题困扰了我许久(我的老师也不知道,一般只是认为会得到一条直线),现在提一下我的发现:

 

对于某个圆心为原点的圆  x^{2}+y^{2}=r^{2}

3.若点P\left ( x_{0}, y_{0}\right )在圆内,过直线l:x_{0}x+y_{0}y=r^{2}上任意一点Q\left ( x_{1}, y_{1}\right )作圆的两条切线QM、QN,

   则MN过定点P\left ( x_{0}, y_{0}\right )

反之也成立,即:过圆内P\left ( x_{0}, y_{0}\right )的弦与圆交于M、N,分别过M、N作圆的两条切线交于Q,

   则Q在定直线l:x_{0}x+y_{0}y=r^{2}上。

尝试证明(临时想的,不知道对不对):

M\left ( x_{2},y_{2}\right ),N( x_{3},y_{3}),则有 QM:x_{1}x_{2}+y_{1}y_{2}=r^{2},     QN:x_{1}x_{3}+y_{1}y_{3}=r^{2}

所以MN满足x_{1}x+y_{1}y=r^{2}

由于Q在直线l:x_{0}x+y_{0}y=r^{2}上,满足x_{1}x_{0}+y_{1}y_{0}=r^{2}

P\left ( x_{0}, y_{0}\right )代入MNx_{1}x+y_{1}y=r^{2},则满足对于任意\left ( x_{1}, y_{1}\right )均满足x_{1}x_{0}+y_{1}y_{0}=r^{2}

所以MN过定点P\left ( x_{0}, y_{0}\right )

 

圆不怎么考嘛,但是圆锥曲线就经常考了,下面这些比较重要:

推广:对于曲线\frac{x^{2}}{a^{2}}\pm \frac{y^{2}}{b^{2}}=1

3.若点P\left ( x_{0}, y_{0}\right )在曲线内,过直线l:\frac{x_{0}x}{a^{2}}\pm \frac{y_{0}y}{b^{2}}=1上任意一点Q\left ( x_{1}, y_{1}\right )作曲线的两条切线QM、QN,

   则MN过定点P\left ( x_{0}, y_{0}\right )

反之也成立,即:过曲线内P\left ( x_{0}, y_{0}\right )的弦与曲线交于M、N,分别过M、N作曲线的两条切线交于Q,

   则Q在定直线l:\frac{x_{0}x}{a^{2}}\pm \frac{y_{0}y}{b^{2}}=1上。

 

推广:对于曲线y^{2}=2px

3.若点P\left ( x_{0}, y_{0}\right )在曲线内,过直线l:y_{0}y=p(x+x_{0})上任意一点Q\left ( x_{1}, y_{1}\right )作曲线的两条切线QM、QN,

   则MN过定点P\left ( x_{0}, y_{0}\right )

反之也成立,即:过曲线内P\left ( x_{0}, y_{0}\right )的弦与曲线交于M、N,分别过M、N作曲线的两条切线交于Q,

   则Q在定直线l:y_{0}y=p(x+x_{0})上。

如此一来,便将切点弦结论中点在曲线外、曲线上、曲线内的情况统一起来。

 

看一道例题:已知曲线C:x^{2}=4yP(2,3)。过P的弦与C交于M\left ( x_{1},y_{1}\right ),N( x_{2},y_{2}),过M,N分别作C的切线l_{1},l_{2}交于Q,求Q到曲线C距离的最小值。

 

有上述结论可以知道Q的轨迹为定直线,问题就转化为定直线到抛物线的最短距离

知道这些结论就可以随意出题了,一般来说定点定直线

遇到以此为背景的题可以将结论作为答案的检验,如果没时间还可以走江湖,屡试不爽。

 

再进一步谈谈 3

对于曲线\frac{x^{2}}{a^{2}}\pm \frac{y^{2}}{b^{2}}=1

P\left (c,0)代入结论,得到l:x=\frac{a^{2}}{c}

可以发现这就是焦点与准线的对应关系

所以说焦点与准线是该结论的特殊情况,是不是感觉更神奇了。

 

后来经过数竞同学提醒P与l就是圆锥曲线中极点与极线,不过当时没找到上述的相切性质。

更多有趣的性质可以去百度(我也不会了)。

 

最后挂上引发我这些思考的那道题:

已知曲线C:\frac{x^{2}}{4}+\frac{y^{2}}{2}=1,A、B分别为C的左右顶点,P为l:x=4上的一点,直线PA、PB分别与C交于另一点M,N

求四边形AMBN面积的最大值。

 

 

这道题正常思路应该是设P点暴算(答案就是如此),经同学提问发现MN过定点(1,0)

这让我突然想起了之前思考到一半的切点弦性质具有相同的对应关系(P与l的横坐标乘积为a^2)。

欢迎讨论(有错误还请纠正)

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值