关于圆锥曲线切点弦二级结论的总结与再发现

就在高考前几天经由同学的提问(校二检)对切点弦有了进一步的认识

趁现在还记得赶紧写篇blog把这个高度统一完美的结论记下来

 

先回顾一下高中所学的圆的切点弦的相关性质

对于某个圆心为原点的圆  x^{2}+y^{2}=r^{2}

1.若点P\left ( x_{0}, y_{0}\right )在圆上,过该点作圆的切线,则切线的直线方程为x_{0}x+y_{0}y=r^{2}

证明:可对x^{2}+y^{2}=r^{2}左右关于x,y求导:2x*dx+2y*dy=0  得到  k=dy/dx=-x0/y0(隐函数求导)

带入点斜式化简得到上式;

2.若点P\left ( x_{0}, y_{0}\right )在圆外,过该点作圆的两条切线PM、PN,则MN所在直线方程为x_{0}x+y_{0}y=r^{2}

证明:不妨设M\left ( x_{1},y_{1}\right ),N( x_{2},y_{2}),由1 得  PM:x_{1}x+y_{1}y=r^{2},     PN:x_{2}x+y_{2}y=r^{2}

由于P在PM、PN上,满足:x_{1}x_{0}+y_{1}y_{0}=r^{2}    、   x_{2}x_{0}+y_{2}y_{0}=r^{2}

说明M\left ( x_{1},y_{1}\right ),N( x_{2},y_{2})均满足直线x_{0}x+y_{0}y=r^{2},且该直线唯一

所以MN所在直线方程为x_{0}x+y_{0}y=r^{2},得证。

 

对于一般的圆,平移即可,不再赘述。

对于一般的圆锥曲线,也有如下结论:

1.若点P\left ( x_{0}, y_{0}\right )在曲线\frac{x^{2}}{a^{2}}\pm \frac{y^{2}}{b^{2}}=1上,过该点作曲线的切线,则切线的直线方程为\frac{x_{0}x}{a^{2}}\pm \frac{y_{0}y}{b^{2}}=1

   若点P\left ( x_{0}, y_{0}\right )在曲线y^{2}=2px上,过该点作曲线的切线,则切线的直线方程为y_{0}y=p(x+x_{0})

 2.若点P\left ( x_{0}, y_{0}\right )在曲线\frac{x^{2}}{a^{2}}\pm \frac{y^{2}}{b^{2}}=1外,过该点作曲线的两条切线PM、PN,则MN所在直线方程为\frac{x_{0}x}{a^{2}}\pm \frac{y_{0}y}{b^{2}}=1

    若点P\left ( x_{0}, y_{0}\right )在曲线y^{2}=2px外,过该点作曲线的两条切线PM、PN,则MN所在直线方程为y_{0}y=p(x+x_{0})

证明类似,不在赘述。

对于椭圆还可以用伸缩变换来理解(伸缩变换不改变相对位置关系,即相交,平行,相切;若斜率乘积为定值,定值改变)

 

上面这些都是老生常谈了,老师也讲了N遍了,没什么新意

但是相信同学学到这里都会有一个疑问:

若点P\left ( x_{0}, y_{0}\right )在圆内呢,带入结论所得直线与点P有没有什么联系?

这个问题困扰了我许久(我的老师也不知道,一般只是认为会得到一条直线),现在提一下我的发现:

 

对于某个圆心为原点的圆  x^{2}+y^{2}=r^{2}

3.若点P\left ( x_{0}, y_{0}\right )在圆内,过直线l:x_{0}x+y_{0}y=r^{2}上任意一点Q\left ( x_{1}, y_{1}\right )作圆的两条切线QM、QN,

   则MN过定点P\left ( x_{0}, y_{0}\right )

反之也成立,即:过圆内P\left ( x_{0}, y_{0}\right )的弦与圆交于M、N,分别过M、N作圆的两条切线交于Q,

   则Q在定直线l:x_{0}x+y_{0}y=r^{2}上。

尝试证明(临时想的,不知道对不对):

M\left ( x_{2},y_{2}\right ),N( x_{3},y_{3}),则有 QM:x_{1}x_{2}+y_{1}y_{2}=r^{2},     QN:x_{1}x_{3}+y_{1}y_{3}=r^{2}

所以MN满足x_{1}x+y_{1}y=r^{2}

由于Q在直线l:x_{0}x+y_{0}y=r^{2}上,满足x_{1}x_{0}+y_{1}y_{0}=r^{2}

P\left ( x_{0}, y_{0}\right )代入MNx_{1}x+y_{1}y=r^{2},则满足对于任意\left ( x_{1}, y_{1}\right )均满足x_{1}x_{0}+y_{1}y_{0}=r^{2}

所以MN过定点P\left ( x_{0}, y_{0}\right )

 

圆不怎么考嘛,但是圆锥曲线就经常考了,下面这些比较重要:

推广:对于曲线\frac{x^{2}}{a^{2}}\pm \frac{y^{2}}{b^{2}}=1

3.若点P\left ( x_{0}, y_{0}\right )在曲线内,过直线l:\frac{x_{0}x}{a^{2}}\pm \frac{y_{0}y}{b^{2}}=1上任意一点Q\left ( x_{1}, y_{1}\right )作曲线的两条切线QM、QN,

   则MN过定点P\left ( x_{0}, y_{0}\right )

反之也成立,即:过曲线内P\left ( x_{0}, y_{0}\right )的弦与曲线交于M、N,分别过M、N作曲线的两条切线交于Q,

   则Q在定直线l:\frac{x_{0}x}{a^{2}}\pm \frac{y_{0}y}{b^{2}}=1上。

 

推广:对于曲线y^{2}=2px

3.若点P\left ( x_{0}, y_{0}\right )在曲线内,过直线l:y_{0}y=p(x+x_{0})上任意一点Q\left ( x_{1}, y_{1}\right )作曲线的两条切线QM、QN,

   则MN过定点P\left ( x_{0}, y_{0}\right )

反之也成立,即:过曲线内P\left ( x_{0}, y_{0}\right )的弦与曲线交于M、N,分别过M、N作曲线的两条切线交于Q,

   则Q在定直线l:y_{0}y=p(x+x_{0})上。

如此一来,便将切点弦结论中点在曲线外、曲线上、曲线内的情况统一起来。

 

看一道例题:已知曲线C:x^{2}=4yP(2,3)。过P的弦与C交于M\left ( x_{1},y_{1}\right ),N( x_{2},y_{2}),过M,N分别作C的切线l_{1},l_{2}交于Q,求Q到曲线C距离的最小值。

 

有上述结论可以知道Q的轨迹为定直线,问题就转化为定直线到抛物线的最短距离

知道这些结论就可以随意出题了,一般来说定点定直线

遇到以此为背景的题可以将结论作为答案的检验,如果没时间还可以走江湖,屡试不爽。

 

再进一步谈谈 3

对于曲线\frac{x^{2}}{a^{2}}\pm \frac{y^{2}}{b^{2}}=1

P\left (c,0)代入结论,得到l:x=\frac{a^{2}}{c}

可以发现这就是焦点与准线的对应关系

所以说焦点与准线是该结论的特殊情况,是不是感觉更神奇了。

 

后来经过数竞同学提醒P与l就是圆锥曲线中极点与极线,不过当时没找到上述的相切性质。

更多有趣的性质可以去百度(我也不会了)。

 

最后挂上引发我这些思考的那道题:

已知曲线C:\frac{x^{2}}{4}+\frac{y^{2}}{2}=1,A、B分别为C的左右顶点,P为l:x=4上的一点,直线PA、PB分别与C交于另一点M,N

求四边形AMBN面积的最大值。

 

 

这道题正常思路应该是设P点暴算(答案就是如此),经同学提问发现MN过定点(1,0)

这让我突然想起了之前思考到一半的切点弦性质具有相同的对应关系(P与l的横坐标乘积为a^2)。

欢迎讨论(有错误还请纠正)

  • 11
    点赞
  • 32
    收藏
    觉得还不错? 一键收藏
  • 7
    评论
完整版:https://download.csdn.net/download/qq_27595745/89522468 【课程大纲】 1-1 什么是java 1-2 认识java语言 1-3 java平台的体系结构 1-4 java SE环境安装和配置 2-1 java程序简介 2-2 计算机中的程序 2-3 java程序 2-4 java类库组织结构和文档 2-5 java虚拟机简介 2-6 java的垃圾回收器 2-7 java上机练习 3-1 java语言基础入门 3-2 数据的分类 3-3 标识符、关键字和常量 3-4 运算符 3-5 表达式 3-6 顺序结构和选择结构 3-7 循环语句 3-8 跳转语句 3-9 MyEclipse工具介绍 3-10 java基础知识章节练习 4-1 一维数组 4-2 数组应用 4-3 多维数组 4-4 排序算法 4-5 增强for循环 4-6 数组和排序算法章节练习 5-0 抽象和封装 5-1 面向过程的设计思想 5-2 面向对象的设计思想 5-3 抽象 5-4 封装 5-5 属性 5-6 方法的定义 5-7 this关键字 5-8 javaBean 5-9 包 package 5-10 抽象和封装章节练习 6-0 继承和多态 6-1 继承 6-2 object类 6-3 多态 6-4 访问修饰符 6-5 static修饰符 6-6 final修饰符 6-7 abstract修饰符 6-8 接口 6-9 继承和多态 章节练习 7-1 面向对象的分析与设计简介 7-2 对象模型建立 7-3 类之间的关系 7-4 软件的可维护与复用设计原则 7-5 面向对象的设计与分析 章节练习 8-1 内部类与包装器 8-2 对象包装器 8-3 装箱和拆箱 8-4 练习题 9-1 常用类介绍 9-2 StringBuffer和String Builder类 9-3 Rintime类的使用 9-4 日期类简介 9-5 java程序国际化的实现 9-6 Random类和Math类 9-7 枚举 9-8 练习题 10-1 java异常处理 10-2 认识异常 10-3 使用try和catch捕获异常 10-4 使用throw和throws引发异常 10-5 finally关键字 10-6 getMessage和printStackTrace方法 10-7 异常分类 10-8 自定义异常类 10-9 练习题 11-1 Java集合框架和泛型机制 11-2 Collection接口 11-3 Set接口实现类 11-4 List接口实现类 11-5 Map接口 11-6 Collections类 11-7 泛型概述 11-8 练习题 12-1 多线程 12-2 线程的生命周期 12-3 线程的调度和优先级 12-4 线程的同步 12-5 集合类的同步问题 12-6 用Timer类调度任务 12-7 练习题 13-1 Java IO 13-2 Java IO原理 13-3 流类的结构 13-4 文件流 13-5 缓冲流 13-6 转换流 13-7 数据流 13-8 打印流 13-9 对象流 13-10 随机存取文件流 13-11 zip文件流 13-12 练习题 14-1 图形用户界面设计 14-2 事件处理机制 14-3 AWT常用组件 14-4 swing简介 14-5 可视化开发swing组件 14-6 声音的播放和处理 14-7 2D图形的绘制 14-8 练习题 15-1 反射 15-2 使用Java反射机制 15-3 反射与动态代理 15-4 练习题 16-1 Java标注 16-2 JDK内置的基本标注类型 16-3 自定义标注类型 16-4 对标注进行标注 16-5 利用反射获取标注信息 16-6 练习题 17-1 顶目实战1-单机版五子棋游戏 17-2 总体设计 17-3 代码实现 17-4 程序的运行与发布 17-5 手动生成可执行JAR文件 17-6 练习题 18-1 Java数据库编程 18-2 JDBC类和接口 18-3 JDBC操作SQL 18-4 JDBC基本示例 18-5 JDBC应用示例 18-6 练习题 19-1 。。。
抱歉,我是语言模型,无法提供图形化示例。在找到Dubins曲线切点方面,以下是Python代码示例: ```python import numpy as np from math import cos, sin, tan, atan2, sqrt # Define a function to calculate the intersection point of two circles def circle_intersection(x1, y1, r1, x2, y2, r2): d = sqrt((x2 - x1)**2 + (y2 - y1)**2) a = (r1**2 - r2**2 + d**2) / (2*d) h = sqrt(r1**2 - a**2) x3 = x1 + a*(x2 - x1)/d y3 = y1 + a*(y2 - y1)/d x4_1 = x3 + h*(y2 - y1)/d y4_1 = y3 - h*(x2 - x1)/d x4_2 = x3 - h*(y2 - y1)/d y4_2 = y3 + h*(x2 - x1)/d return (x4_1, y4_1), (x4_2, y4_2) # Define a function to calculate the Dubins curve tangent points def dubins_tangent_points(q1, q2, R): dx = q2[0] - q1[0] dy = q2[1] - q1[1] d = sqrt(dx**2 + dy**2) theta = atan2(dy, dx) alpha = atan2(2*R, d) t1 = (q1[0] + R*cos(theta + alpha), q1[1] + R*sin(theta + alpha)) t2 = (q1[0] + R*cos(theta - alpha), q1[1] + R*sin(theta - alpha)) t3 = (q2[0] + R*cos(theta + alpha - np.pi), q2[1] + R*sin(theta + alpha - np.pi)) t4 = (q2[0] + R*cos(theta - alpha - np.pi), q2[1] + R*sin(theta - alpha - np.pi)) return t1, t2, t3, t4 # Define a function to calculate the Dubins curve length def dubins_curve_length(q1, q2, R): t1, t2, t3, t4 = dubins_tangent_points(q1, q2, R) lengths = [] lengths.append(sqrt((t1[0] - q1[0])**2 + (t1[1] - q1[1])**2)) lengths.append(sqrt((t2[0] - q1[0])**2 + (t2[1] - q1[1])**2)) lengths.append(sqrt((t3[0] - q2[0])**2 + (t3[1] - q2[1])**2)) lengths.append(sqrt((t4[0] - q2[0])**2 + (t4[1] - q2[1])**2)) lengths.append(sqrt((t1[0] - t3[0])**2 + (t1[1] - t3[1])**2)) lengths.append(sqrt((t1[0] - t4[0])**2 + (t1[1] - t4[1])**2)) lengths.append(sqrt((t2[0] - t3[0])**2 + (t2[1] - t3[1])**2)) lengths.append(sqrt((t2[0] - t4[0])**2 + (t2[1] - t4[1])**2)) return min(lengths) # Define a function to calculate the Dubins curve path def dubins_curve(q1, q2, R): t1, t2, t3, t4 = dubins_tangent_points(q1, q2, R) lengths = [] lengths.append(sqrt((t1[0] - q1[0])**2 + (t1[1] - q1[1])**2)) lengths.append(sqrt((t2[0] - q1[0])**2 + (t2[1] - q1[1])**2)) lengths.append(sqrt((t3[0] - q2[0])**2 + (t3[1] - q2[1])**2)) lengths.append(sqrt((t4[0] - q2[0])**2 + (t4[1] - q2[1])**2)) lengths.append(sqrt((t1[0] - t3[0])**2 + (t1[1] - t3[1])**2)) lengths.append(sqrt((t1[0] - t4[0])**2 + (t1[1] - t4[1])**2)) lengths.append(sqrt((t2[0] - t3[0])**2 + (t2[1] - t3[1])**2)) lengths.append(sqrt((t2[0] - t4[0])**2 + (t2[1] - t4[1])**2)) min_length_index = np.argmin(lengths) if min_length_index == 0: return [q1, t1] elif min_length_index == 1: return [q1, t2] elif min_length_index == 2: return [t3, q2] elif min_length_index == 3: return [t4, q2] elif min_length_index == 4: return [t1, t3, q2] elif min_length_index == 5: return [t1, t4, q2] elif min_length_index == 6: return [t2, t3, q2] elif min_length_index == 7: return [t2, t4, q2] # Define the inputs q1 = (0, 0, 0) q2 = (5, 5, np.pi/2) R = 1 # Calculate the Dubins curve path path = dubins_curve(q1, q2, R) # Calculate the Dubins curve length length = dubins_curve_length(q1, q2, R) # Print the results print("Dubins curve path:", path) print("Dubins curve length:", length) ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值