
上两篇文章已对椭圆及双曲线性质进行了汇总,本文对高考考点中涉及的抛物线的部分性质进行汇总。
注:以下仅讨论焦点在x轴上且开口向右的抛物线性质。
抛物线定义
平面内到定点F(p/2,0)的距离和到定直线l:x=-p/2的距离之比为常数e=1的点的轨迹是抛物线。其中定点F(p/2,0)为抛物线的焦点,定直线l:x=-p/2为抛物线的准线。
此为课本上的标准定义,不再详述。
上述定义即可作为判定定理也可作为性质定理。
抛物线方程
1.抛物线标准方程

其中p>0,几何意义为焦准距,下同。不再详述。
2.抛物线参数方程

其中t为参数,显然t=x/y,故参数t的几何意义为抛物线上任意点(除顶点外)与原点连线的斜率的倒数。
切线
1.抛物线切线定理
抛物线上任意点P,其在准线上的射影为M,抛物线焦点为F,则过P点的切线平分∠MPF。


此定理揭示了抛物线的一条光学性质,该性质在高中数学课本上也有提及,即从抛物线的一个焦点发出的光线,