火灾监测报警技术是预防火灾的重要手段。近年来, 火灾发生的频率高、覆盖范围广,给人民群众的生命财产 和社会经济造成了巨大损失,已成为一种普遍且损害巨大 的自然灾害。一旦引起火灾,火势将迅速蔓延,烟雾浓毒 性大,易造成人员伤亡,并且扑救火灾难度大,人员疏散 困难。因此,如何实现对火灾的实时有效监测已成为重点 研究的课题。 根据所探测物理量的不同,传统火灾探测器有感烟 式、感温式、感光式、和复合式等类型[1] ,
,但是这些火灾 探测器对于大空间的室内场合和开阔的室外环境的火灾 报警,探测结果受到很大影响,尤其在可靠性方面存在明 显不足。本文研究了基于MATLAB的火灾监测方法,与传统 的火灾监测技术相比,突破了空间的限制,能迅速获得较 准确的火灾监测结果。
一、火焰特征分析
1.1 火焰特征
火焰的色彩特征在燃烧过程中比较明显,红色到黄色 范围内的色彩居多。火灾发生时,火焰区域与背景图像有 明显的视觉差异,火焰发光的现象在图像中的表现为火焰 的颜色偏红并且与周围的其它像素点相比亮度值明显偏 高,因此,在火灾的识别研究中通常利用火焰的颜色特征 进行判断。
1.2 RGB颜色模型
RGB颜色模型也称为加色法混色模型。根据三基色原 理,用基色光单位来表示光的量。在RGB颜色模型,任意色 光F都可以用R、G、B三色不同分量的相加混合而成,表 达式为F=r[R]+g[G]+b[B]。当三基色分量都为0时,F为 黑色光;当三基色分量都为1时,F为白色光。RGB颜色模型 几乎包括了人类视力所能感知的所有颜色。RGB颜色空间 可以用如图1所示的立方体来描述。F是这个立方体坐标中 的一点,代表任一颜色,调整三色系数r、g、b中的任一系 数值就会改变F的坐标值,从而改变其色值。
1.3 提取火焰图像特征及分析
对火焰模型特征提取时,通过收集的火焰模型是以 RGB模型在计算机中存储的,分析该模型非常有利于火 焰特征的提取。现对搜集到的18幅包含火焰的图像进行 分析,图像大约含像素点256.7万个,其中火焰像素点约 83.5万个。另有不包含火焰的图像8幅,图像大约包含像 素点117.8万个 。
二、算法描述
针对传统火灾监测系统对于大空间的室内场合和开阔的室外环境易失效的问题,提出了一种结合火灾火 焰特征和烟雾特征来进行判断的数字图像型火灾监测算法。火焰颜色特征是基于RGB颜色模型中的R、G、B三基色分 量和它们之间的关系来判断是否有火焰发生,烟雾模型特征是图像灰度化预处理后,基于HIS空间模型提取的,通过计 算像素点与基准像素点之间距离D的大小来判断是否有火灾发生。对提出的算法进行MATLAB仿真,并和传统的基于 五种算子的边缘检测算法提取火焰烟雾特征进行对比。实验结果表明,提出的火焰特征和烟雾特征提取算法具有优越 性,时效性更好,能够实现快速高效的监测,解决了大空间场所火灾检测的难题。算法的流程图,