表面缺陷检测是机器视觉领域中非常重要的一 项研究内容,也称为AOI(Automated optical in— spection)或AsI(Automated surface inspection), 它是利用机器视觉设备获取图像来判断采集图像中 是否存在缺陷的技术.目前,基于机器视觉的表面 缺陷装备已经在各工业领域广泛替代人工肉眼检 测,包括3C、汽车、家电、机械制造、半导体及电子、 化工、医药、航空航天、轻工等行业.传统的基于机 器视觉的表面缺陷检测方法,往往采用常规图像处 理算法或人工设计特征加分类器方式.
一、算法描述
近年来,随着以卷积神经网络fConv01utional neural network,CNN)为代表的深度学习模型在 诸多计算机视觉(Computer vjsion,CV)领域成功 应用,例如人脸识别、行人重识别、场景文字检测、 目标跟踪和自动驾驶等,不少基于深度学习的缺陷 检测方法也广泛应用在各种工业场景中,甚至国内 外一些公司开发出多种基于深度学习的商用工业表 面缺陷检测软件,如表1所示.全球传统工业视觉 及其部件的市场规模在2025年将达到192亿美元【“, 其中中国占比约为30%,并保持14%的年度平均增 长率,这一领域正在逐步被新一代基于深度学习的 工业视觉技术替代.同时我国在《中国制造2025》 白皮书中提出“推广采用先进成型和加工方法、在 线检测装置、智能化生产和物流系统及检测设备等, 使重点实物产品的性能稳定性、质量可靠性、环境 适应性、使用寿命等指标达到国际同类产品先进水 平”。
近年来,基于深度学习的表面缺陷检测技术广泛应用在各种工业场景中.本文对近年来基于深度学习的表面缺陷 检测方法进行了梳理,根据数据标签的不同将其分为全监督学习模型方法、无监督学习模型方法和其他方法三大类,并对各 种典型方法进一步细分归类和对比分析,总结了每种方法的优缺点和应用场景.
在金属机械零件表面缺陷检测过程中,需要引入级联 分类器,对全部连接层中的输出特征进行分类处理,使其 能够获取更加准确的分类结果。为了全面提取全连接层的 特征,采用卷积神经网络的梯度直方图和局部二值模式提 取输出特征,同时对多个不同级联分类器依次进行训练, 将得到的分类结果进行决策融合,根据决策融合结果实现 零件表面缺陷检测。 方向梯度直方图在细微变形的特征下具有良好的不 变特性,但是方向梯度直方图描述局部特征的能力存在缺 陷,同时对噪声十分敏感。局部二值模式具有较好的局部 表达能力,