基于Matlab的缺陷识别检测系统

文章探讨了基于深度学习的表面缺陷检测方法,特别是卷积神经网络(CNN)在金属机械零件表面检测中的作用。通过级联分类器和特征提取技术如HOG和LBP,提高了检测准确性。此外,文章提及了深度学习在减少人工检测、提升工业生产效率方面的贡献,并指出中国在该领域的快速发展和政策支持。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        表面缺陷检测是机器视觉领域中非常重要的一 项研究内容,也称为AOI(Automated optical in— spection)或AsI(Automated surface inspection), 它是利用机器视觉设备获取图像来判断采集图像中 是否存在缺陷的技术.目前,基于机器视觉的表面 缺陷装备已经在各工业领域广泛替代人工肉眼检 测,包括3C、汽车、家电、机械制造、半导体及电子、 化工、医药、航空航天、轻工等行业.传统的基于机 器视觉的表面缺陷检测方法,往往采用常规图像处 理算法或人工设计特征加分类器方式.

 

 一、算法描述

        近年来,随着以卷积神经网络fConv01utional neural network,CNN)为代表的深度学习模型在 诸多计算机视觉(Computer vjsion,CV)领域成功 应用,例如人脸识别、行人重识别、场景文字检测、 目标跟踪和自动驾驶等,不少基于深度学习的缺陷 检测方法也广泛应用在各种工业场景中,甚至国内 外一些公司开发出多种基于深度学习的商用工业表 面缺陷检测软件,如表1所示.全球传统工业视觉 及其部件的市场规模在2025年将达到192亿美元【“, 其中中国占比约为30%,并保持14%的年度平均增 长率,这一领域正在逐步被新一代基于深度学习的 工业视觉技术替代.同时我国在《中国制造2025》 白皮书中提出“推广采用先进成型和加工方法、在 线检测装置、智能化生产和物流系统及检测设备等, 使重点实物产品的性能稳定性、质量可靠性、环境 适应性、使用寿命等指标达到国际同类产品先进水 平”。

         近年来,基于深度学习的表面缺陷检测技术广泛应用在各种工业场景中.本文对近年来基于深度学习的表面缺陷 检测方法进行了梳理,根据数据标签的不同将其分为全监督学习模型方法、无监督学习模型方法和其他方法三大类,并对各 种典型方法进一步细分归类和对比分析,总结了每种方法的优缺点和应用场景.

        在金属机械零件表面缺陷检测过程中,需要引入级联 分类器,对全部连接层中的输出特征进行分类处理,使其 能够获取更加准确的分类结果。为了全面提取全连接层的 特征,采用卷积神经网络的梯度直方图和局部二值模式提 取输出特征,同时对多个不同级联分类器依次进行训练, 将得到的分类结果进行决策融合,根据决策融合结果实现 零件表面缺陷检测。 方向梯度直方图在细微变形的特征下具有良好的不 变特性,但是方向梯度直方图描述局部特征的能力存在缺 陷,同时对噪声十分敏感。局部二值模式具有较好的局部 表达能力,

MATLAB中设计缺陷识别检测系统通常涉及图像处理、机器学习和计算机视觉等多个领域的知识。下面是一个简化的概述步骤,并非提供完整的代码,因为这需要大量的代码量和专业知识: 1. **数据预处理**: - 导入和清洗图像数据,可能会包括调整大小、归一化等操作。 ```matlab img = imread('your_image.jpg'); img = imresize(img, [desired_size, desired_size]); ``` 2. **特征提取**: - 使用SIFT、SURF或其他特征检测器提取关键点和描述符。 ```matlab keypoints = detectFeatures(img, 'sift'); descriptors = extractFeatures(img, keypoints); ``` 3. **训练模型**: - 如果是基于机器学习检测,可能使用支持向量机(SVM)、卷积神经网络(CNN),或者深度学习库如DeepLearning Toolbox。 ```matlab classifier = fitcecoc(descriptors, labels); % 假设labels是对应的标签 ``` 4. **缺陷识别**: - 对测试图像应用特征提取并进行分类。 ```matlab test_keypoints = detectFeatures(test_img, 'sift'); test_descriptors = extractFeatures(test_img, test_keypoints); predicted_labels = predict(classifier, test_descriptors); ``` 5. **结果评估**: - 计算准确率或绘制混淆矩阵。 ```matlab accuracy = sum(predicted_labels == true_labels) / numel(true_labels); ``` 6. **可视化**: - 可视化检测到的缺陷位置。 ```matlab showDefects(img, keypoints, predicted_labels); ``` 注意:这只是一个简化的流程,实际项目中可能还需要数据增强、异常值处理、模型优化等步骤。具体的代码实现会依赖于你使用的库函数和你希望达到的精确度。
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值