基于Matlab的缺陷识别检测系统

文章探讨了基于深度学习的表面缺陷检测方法,特别是卷积神经网络(CNN)在金属机械零件表面检测中的作用。通过级联分类器和特征提取技术如HOG和LBP,提高了检测准确性。此外,文章提及了深度学习在减少人工检测、提升工业生产效率方面的贡献,并指出中国在该领域的快速发展和政策支持。
摘要由CSDN通过智能技术生成

        表面缺陷检测是机器视觉领域中非常重要的一 项研究内容,也称为AOI(Automated optical in— spection)或AsI(Automated surface inspection), 它是利用机器视觉设备获取图像来判断采集图像中 是否存在缺陷的技术.目前,基于机器视觉的表面 缺陷装备已经在各工业领域广泛替代人工肉眼检 测,包括3C、汽车、家电、机械制造、半导体及电子、 化工、医药、航空航天、轻工等行业.传统的基于机 器视觉的表面缺陷检测方法,往往采用常规图像处 理算法或人工设计特征加分类器方式.

 

 一、算法描述

        近年来,随着以卷积神经网络fConv01utional neural network,CNN)为代表的深度学习模型在 诸多计算机视觉(Computer vjsion,CV)领域成功 应用,例如人脸识别、行人重识别、场景文字检测、 目标跟踪和自动驾驶等,不少基于深度学习的缺陷 检测方法也广泛应用在各种工业场景中,甚至国内 外一些公司开发出多种基于深度学习的商用工业表 面缺陷检测软件,如表1所示.全球传统工业视觉 及其部件的市场规模在2025年将达到192亿美元【“, 其中中国占比约为30%,并保持14%的年度平均增 长率,这一领域正在逐步被新一代基于深度学习的 工业视觉技术替代.同时我国在《中国制造2025》 白皮书中提出“推广采用先进成型和加工方法、在 线检测装置、智能化生产和物流系统及检测设备等, 使重点实物产品的性能稳定性、质量可靠性、环境 适应性、使用寿命等指标达到国际同类产品先进水 平”。

         近年来,基于深度学习的表面缺陷检测技术广泛应用在各种工业场景中.本文对近年来基于深度学习的表面缺陷 检测方法进行了梳理,根据数据标签的不同将其分为全监督学习模型方法、无监督学习模型方法和其他方法三大类,并对各 种典型方法进一步细分归类和对比分析,总结了每种方法的优缺点和应用场景.

        在金属机械零件表面缺陷检测过程中,需要引入级联 分类器,对全部连接层中的输出特征进行分类处理,使其 能够获取更加准确的分类结果。为了全面提取全连接层的 特征,采用卷积神经网络的梯度直方图和局部二值模式提 取输出特征,同时对多个不同级联分类器依次进行训练, 将得到的分类结果进行决策融合,根据决策融合结果实现 零件表面缺陷检测。 方向梯度直方图在细微变形的特征下具有良好的不 变特性,但是方向梯度直方图描述局部特征的能力存在缺 陷,同时对噪声十分敏感。局部二值模式具有较好的局部 表达能力,

基于Matlab缺陷信号识别系统可以通过以下步骤来实现: 1. 数据采集:首先,需要采集包含缺陷信号的数据样本。可以使用传感器、仪器或设备来采集信号数据,并将其保存为Matlab可处理的格式,如.csv或.mat文件。 2. 信号预处理:对采集到的信号进行预处理,以提高后续信号处理算法的效果。常见的预处理方法包括滤波、降噪、去除基线漂移等。 3. 特征提取:通过数学方法从信号中提取有代表性的特征。例如,可以使用时域特征(如均值、方差)或频域特征(如功率谱、频谱峰值)等。Matlab提供了多种特征提取的函数和工具箱,可以方便地完成这一步骤。 4. 特征选择:根据具体应用需求,对提取到的特征进行选择,筛选出对于缺陷信号分类有较高区分度的特征。可以使用统计方法、机器学习算法来进行特征选择,并结合交叉验证等评估方法进行选择结果的验证。 5. 分类器建模:选择合适的分类算法,如支持向量机(SVM)、人工神经网络(ANN)等,并使用选定的特征进行模型训练。Matlab提供了丰富的机器学习工具箱,可以方便地进行分类器的建模和训练。 6. 模型评估:使用预留的测试数据对建立的分类模型进行评估。可以计算准确率、召回率、F1值等指标来评估模型的性能,并可以使用混淆矩阵等可视化工具来分析分类结果。 7. 系统集成:根据实际应用需求,将训练好的分类模型集成到一个完整的系统中。可以将数据采集、信号预处理、特征提取、分类器建模等步骤封装成一个Matlab函数,方便用户在实际应用场景中调用和使用。 总之,基于Matlab缺陷信号识别系统可以通过数据采集、信号预处理、特征提取、特征选择、分类器建模、模型评估和系统集成等步骤来实现Matlab提供了丰富的函数和工具箱,方便用户进行信号处理、特征提取和机器学习等操作,使得系统开发和调试过程更加高效和便捷。
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值