[BZOJ]2131 免费的馅饼 DP + 绝对值转化

2131: 免费的馅饼

Time Limit: 10 Sec   Memory Limit: 259 MB
Submit: 409   Solved: 246
[ Submit][ Status][ Discuss]

Description

Input

第一行是用空格隔开的二个正整数,分别给出了舞台的宽度W(1到10^8之间)和馅饼的个数n(1到10^5)。  接下来n行,每一行给出了一块馅饼的信息。由三个正整数组成,分别表示了每个馅饼落到舞台上的时刻t[i](1到10^8秒),掉到舞台上的格子的编号p[i](1和w之间),以及分值v[i](1到1000之间)。游戏开始时刻为0。输入文件中同一行相邻两项之间用一个空格隔开。输入数据中可能存在两个馅饼的t[i]和p[i]都一样。

Output

一个数,表示游戏者获得的最大总得分。

Sample Input

3 4
1 2 3
5 2 3
6 3 4
1 1 5

Sample Output

12
【数据规模】
对于100%的数据,1<=w,t[i]<=10^8,1<=n<=100000。

HINT

Source

[ Submit][ Status][ Discuss]


HOME Back

这道题的思路并不难, 但是有一点蛮难想到, 主要是第一次见。 

转移的条件是 ti>tj|pipj|<=2(titj)  
这个条件等价于 pipj<=2(titj)pjpi<=2(titj)  
(推出这一步是关键) 
移一下就是 
2ti+pi>=2tj+pj2tipi>=2tjpj  
然后就是说构成一个(2*t+p,2*t-p)的坐标系 
然后维护左下角点的最大值就可以了 

以上来自xiaoyimi的博客, 讲得非常清楚. 这给我提供一个思路就是: 1. 遇到绝对值的题, 往往题目的考察就在于绝对值的转化 2. 绝对值的转化有时候可以直接转化成两个方程来做.  3. 要是有两个方程的话可以看做二维坐标系来想。 4.有的时候想不出DP思路来就先立状态转移, 再慢慢考虑该如何转移, 不要空想.

#include<stdio.h>
#include<algorithm>
using namespace std;
const int maxn = 100005;
int tot, mm, n, ans;
int c[maxn], f[maxn];
struct temp{ int y, id;}b[maxn];
struct point{ int x, y, v;}a[maxn];
inline bool cmp1(point x, point y){
    return (x.x == y.x) ? x.y < y.y : x.x < y.x;
}
inline bool cmp2(temp x, temp y){
    return x.y < y.y;
}
inline void modify(int x, int val){
    for(int i = x; i <= tot; i += i & -i) c[i] = max(c[i], val);
}
inline int query(int x){
    int tmp = 0;
    for(int i = x; i; i -= i & -i) tmp  = max(tmp, c[i]);
    return tmp;
}
int main(){
    scanf("%d%d", &mm, &n);
    for(int i = 1; i <= n; ++i){
        int t, p;
        scanf("%d%d%d", &t, &p, &a[i].v);
        a[i].x = 2 * t + p;
        a[i].y = 2 * t - p;
    }
    sort(a + 1, a + n + 1, cmp1);
    for(int i = 1; i <= n; ++i) b[i].y = a[i].y, b[i].id = i;
    sort(b + 1, b + n + 1, cmp2);
    for(int i = 1; i <= n; ++i) //离散化 
        if(b[i].y != b[i - 1].y || i == 1) a[b[i].id].y = ++tot;
        else a[b[i].id].y = tot;
    for(int i = 1; i <= n; ++i){
        f[i] = query(a[i].y) + a[i].v; //找坐标系上x比自己小的, y最大的点来转移 
        modify(a[i].y, f[i]);
    }
    for(int i = 1; i <= n; ++i) ans = max(f[i], ans);
    printf("%d\n", ans);
}




题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值