[BZOJ]4530 [BJOI2014] 大融合 LCT维护子树信息

4530: [Bjoi2014]大融合

Time Limit: 10 Sec   Memory Limit: 256 MB
Submit: 525   Solved: 311
[ Submit][ Status][ Discuss]

Description

小强要在N个孤立的星球上建立起一套通信系统。这套通信系统就是连接N个点的一个树。
这个树的边是一条一条添加上去的。在某个时刻,一条边的负载就是它所在的当前能够
联通的树上路过它的简单路径的数量。
例如,在上图中,现在一共有了5条边。其中,(3,8)这条边的负载是6,因
为有六条简单路径2-3-8,2-3-8-7,3-8,3-8-7,4-3-8,4-3-8-7路过了(3,8)。
现在,你的任务就是随着边的添加,动态的回答小强对于某些边的负载的
询问。

Input

第一行包含两个整数N,Q,表示星球的数量和操作的数量。星球从1开始编号。
接下来的Q行,每行是如下两种格式之一:
A x y 表示在x和y之间连一条边。保证之前x和y是不联通的。
Q x y 表示询问(x,y)这条边上的负载。保证x和y之间有一条边。
1≤N,Q≤100000

Output

对每个查询操作,输出被查询的边的负载。

Sample Input

8 6
A 2 3
A 3 4
A 3 8
A 8 7
A 6 5
Q 3 8

Sample Output

6

HINT

Source

[ Submit][ Status][ Discuss]


HOME Back

题解

我们可以发现这道题需要维护子树信息~ 因为答案就是子树大小乘以联通块其他的size. 因为要加边想到LCT... 考虑如何维护子树信息. 对于每个点x, 维护一个总信息sum, 在splay update的时候更新 . sum等于splay子树的信息+虚子树的信息. 那么将一个点access之后, 那么他的虚子树信息+自己信息就是子树信息. 虚子树信息只在link和access中改变. access加减即可(详见代码), 但link的时候要注意要将x makeroot还要将y makeroot(或者access加splay). 这样就只会是y的虚子树信息改变, 不会影响其他点.

统计答案的时候split改了一下, access y再splay x, 可以自己思考一下为什么.

#include<bits/stdc++.h>
#define ls c[x][0]
#define rs c[x][1]
#define Boc register char
#define Acce register int
using namespace std;
const int maxn = 2e5 + 5;
char ss[2];
bool rev[maxn];
int n, Q, top;
int fa[maxn], c[maxn][2], s[maxn], em[maxn], sum[maxn];
inline const int read()
{
	Acce x = 0;
	Boc ch = getchar();
	while (ch < '0' || ch > '9') ch = getchar();
	while (ch >= '0' && ch <= '9') x = (x << 3) + (x << 1) + ch - '0', ch = getchar();
	return x;
}
inline bool isroot(int x)
{	return c[fa[x]][0] != x && c[fa[x]][1] != x;}
inline void update(int x)
{	sum[x] = sum[c[x][0]] + sum[c[x][1]] + em[x] + 1;	}
inline void rever(int x)
{	swap(ls, rs), rev[x] ^= 1;	}
inline void pushdown(int x)
{
	if (rev[x])
		rever(ls), rever(rs), rev[x] = 0;
}
inline void rotate(int x)
{
	int y = fa[x], z = fa[y];
	int l = (c[y][1] == x), r = l ^ 1;
	if (!isroot(y)) c[z][c[z][1] == y] = x;
	fa[x] = z, fa[y]= x, fa[c[x][r]] = y;
	c[y][l] = c[x][r], c[x][r] = y;
	update(y), update(x);
}
inline void splay(int x)
{
	top = 0;
	s[++ top] = x;
	for (int i = x; !isroot(i); i = fa[i]) s[++ top] = fa[i];
	for (int i = top; i; -- i) pushdown(s[i]);
	for (int f; !isroot(x); rotate(x))
		if(!isroot(f = fa[x]))
			rotate((c[fa[f]][0] == f ^ c[f][0] == x) ? x : f); 
}
inline void access(int x)
{
	for (int t = 0; x; x = fa[x])
		splay(x), em[x] += sum[c[x][1]]	- sum[t], c[x][1] = t, update(x), t = x;
}
inline void makeroot(int x)
{	access(x), splay(x), rever(x);	}
inline void link(int x, int y)
{
	makeroot(x), makeroot(y);
	fa[x] = y, em[y] += sum[x], update(y);
}
inline void split(int x, int y)
{
	makeroot(x);
	access(y), splay(x); 
}
int main()
{
	int x, y;
	n = read(), Q = read();
	for (Acce i = 1; i <= n; ++ i) sum[i] = 1;
	for (Acce i = 1; i <= Q; ++ i)
	{
		scanf("%s", ss);
		x = read(), y = read();
		if (ss[0] == 'A')	link(x, y);
		else
		{
			split(x, y);
			printf("%lld\n", 1ll * (em[y] + 1) * (sum[x] - em[y] - 1));
		}
	}
} 


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值