BZOJ4530 BJOI 2014 大融合 LCT维护子树信息

BZOJ4530 大融合

Description

小强要在N个孤立的星球上建立起一套通信系统。这套通信系统就是连接N个点的一个树。
这个树的边是一条一条添加上去的。在某个时刻,一条边的负载就是它所在的当前能够
联通的树上路过它的简单路径的数量。
例如,在上图中,现在一共有了5条边。其中,(3,8)这条边的负载是6,因
为有六条简单路径2-3-8,2-3-8-7,3-8,3-8-7,4-3-8,4-3-8-7路过了(3,8)。
现在,你的任务就是随着边的添加,动态的回答小强对于某些边的负载的
询问。

Input

第一行包含两个整数N,Q,表示星球的数量和操作的数量。星球从1开始编号。
接下来的Q行,每行是如下两种格式之一:
A x y 表示在x和y之间连一条边。保证之前x和y是不联通的。
Q x y 表示询问(x,y)这条边上的负载。保证x和y之间有一条边。
1≤N,Q≤100000


题目中要求的负载就是以一条边端点为根的两个子树的大小相乘。而动态加边的操作很容易想到LCT。一般的LCT通过伸展树维护的是一条链上的信息,但这并不意味着不能使用LCT。

开两个数组 Size[x] sz[x] ,分别表示以 x 为根的子树的大小、x的虚儿子的 Size 和。那么有递推式:

Size[x]=Size[ls[x]]+Size[rs[x]]+1+sz[x]

也就是把 Size 划分为了伸展树里节点的 Size 之和、虚儿子的 Size 之和。那么现在的问题在于如何维护 sz 数组。注意到本题用到的 Access 操作中,每次向上跳都最多只会将一条实边改为虚边、一条虚边改为实边; Link 操作直接是给一个点增加一个虚儿子。所以在这两个操作中维护一下 sz 即可。


#include<stdio.h>
#include<algorithm>
#define MAXN 200005
#define ll long long
using namespace std;

int N,Q;

int ls[MAXN],rs[MAXN],fa[MAXN],rev[MAXN],Size[MAXN],sz[MAXN];

bool isrt(int x){return ls[fa[x]]!=x&&rs[fa[x]]!=x;}

void Update(int p)
{
    Size[p]=Size[ls[p]]+Size[rs[p]]+sz[p]+1;
    //Size[p]=Size[rs[p]]+sz[p]+1;
}

void Putdown(int p)
{
    if(rev[p]==0)return;
    rev[p]=0;rev[ls[p]]^=1;rev[rs[p]]^=1;
    swap(ls[p],rs[p]);
}

void Zig(int x)
{
    int y=fa[x],z=fa[y];
    if(!isrt(y))
    {
        if(ls[z]==y)ls[z]=x;
        else rs[z]=x;
    }
    fa[x]=z;fa[y]=x;fa[rs[x]]=y;
    ls[y]=rs[x];rs[x]=y;
    Update(y);Update(x);
}

void Zag(int x)
{
    int y=fa[x],z=fa[y];
    if(!isrt(y))
    {
        if(ls[z]==y)ls[z]=x;
        else rs[z]=x;
    }
    fa[x]=z;fa[y]=x;fa[ls[x]]=y;
    rs[y]=ls[x];ls[x]=y;
    Update(y);Update(x);
}

int s[MAXN],Top;

void Splay(int x)
{
    int i,y,z;

    s[++Top]=x;
    for(i=x;!isrt(i);i=fa[i])s[++Top]=fa[i];
    while(Top)Putdown(s[Top--]);

    while(!isrt(x))
    {
        y=fa[x];z=fa[y];
        if(isrt(y))
        {
            if(ls[y]==x)Zig(x);
            else Zag(x);
        }
        else
        {
            if(ls[z]==y)
            {
                if(ls[y]==x)Zig(y),Zig(x);
                else Zag(x),Zig(x);
            }
            else
            {
                if(rs[y]==x)Zag(y),Zag(x);
                else Zig(x),Zag(x);
            }
        }
    }
}

void Access(int x)
{
    int t=0;
    while(x)
    {
        Splay(x);
        sz[x]=sz[x]-Size[t]+Size[rs[x]];
        rs[x]=t;
        Update(x);
        t=x;x=fa[x];
    }
}

void SetRt(int x)
{
    Access(x);Splay(x);rev[x]^=1;
}

void Link(int x,int y)
{
    SetRt(x);SetRt(y);
    sz[y]+=Size[x];
    Update(y);
    Splay(y);
    fa[x]=y;
}

int main()
{
    int i,x,y;
    char op[3];
    ll Ans;

    scanf("%d%d",&N,&Q);
    for(i=1;i<=N;i++)Size[i]=1;

    while(Q--)
    {
        scanf("%s%d%d",op,&x,&y);
        if(op[0]=='A')Link(x,y);
        else
        {
            SetRt(x);Access(y);
            Ans=sz[y]+1;
            SetRt(y);Access(x);
            Ans*=(sz[x]+1);
            printf("%lld\n",Ans);
        }
    }
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值