遗传算法解背包问题(C++)

这篇博客探讨了如何运用遗传算法来有效地解决经典的背包问题,主要关注算法的实现和C++编程技巧。通过遗传算法,实现了求解最优解的过程,为优化问题提供了一种新的思路。
摘要由CSDN通过智能技术生成

自用备份

#include<iostream>
#include<iomanip>
#include<cstdlib>
#include<cmath>
#include<ctime>
 
using namespace std;
//定义问题的最大规模
#define max 100
//为题规模,即共有多少个包
int packageNum;
//每个包的重量
int packageWeight[max] = {5,3,11,15,7,9,13,6,8,14}; 
//每个包的价值
int packageValue[max] ={100,5,20,100,60,40,90,40,50,80};
//约束,背包的最大容量
int limitWeight;
//群体的规模
int colonySize;
//colonyState[i][k] 表示一个染色体
//colonyState[1...conlonySize][0|1] 表示一个群体
int colonyState[max][2][max];
// currAge 表示当前代的编号
// (currAge+1)%2 表示下一代的编号
int currAge = 0;
// 个体评价信息表
 
typedef struct tagIndivdualMsg
{
	int index;
	int value;
}IndivdualMsg;
IndivdualMsg indivdualMsg[max];

//函数声明
void printColonyState(int nextAge);

//初始化群体
void colonyInit()
{
	int i, j;
	int w;
 
	for(i=0; i<colonySize; i++)
	{
		//保证找到一个符合约束的染色体
		w = limitWeight +1;
		while(w > limitWeight)
		{
			w = 0;
			for(j=0; j<packageNum&&w<=limitWeight; j++)
			{
				colonyState[i][currAge][j] = rand()%2;
				w += packageWeight[j] * colonyState[i][currAge][j];
			}
			
		}
	}
}
 
//对个体进行评价
int cmp(const void *a, const void *b)
{
	IndivdualMsg *x = (IndivdualMsg *)a;
	IndivdualMsg *y = (IndivdualMsg *)b;
	return y->value - x->value;
}
//适应度函数
void indivdualEstimate()
{
	int i, j;
	for(i=0; i<colonySize; i++)
	{
		indivdualMsg[i].index = i;
		indivdualMsg[i].value = 0;
		for(j=0; j<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值