3992: [SDOI2015]序列统计

标签: ntt
7人阅读 评论(0) 收藏 举报
分类:

容易列出dp方程f[i][j]表示第i个位置乘积为j的方案数。
那么推出转移 f[i+1][jp%m]+=f[i][j]
此时复杂度O(nm2) 显然不能接受
想到对于n特别大的情况一般都会用快速幂。
那么可以列出一个m*m的矩阵进行转移,复杂度O(lognm2)
明显还是不能接受,发现瓶颈在于m.
考虑利用fft把 m2优化掉
如何优化,发现因为jp%m导致没法直接递推
那么利用原根g的性质,求出m的原根。
已知gi互不相同,令i=g[i]
那么原方程可写作f[i+1][gjgp%m]+=f[i][j]f[i+1][gj+p%m]+=f[i][j]
那么这样显然可以用fft优化
复杂度O(lognlogmm)
c++代码如下:

#include <bits/stdc++.h>
#define rep(i,x,y) for(register int i = x; i <= y; ++ i)
#define repd(i,x,y) for(register int i = x ; i >= y; -- i)
using namespace std;
typedef long long ll;
template<typename T>inline void read(T&x)
{
    x = 0;char c;int sign = 1;
    do { c  = getchar(); if(c == '-') sign = -1; }while(!isdigit(c));
    do { x = x * 10 + c - '0'; c = getchar(); }while(isdigit(c));
    x *= sign;
}

const ll N = 2e4+50,mod = 1004535809,G = 3;
ll n,m,x,g,L,len,inv,S,s[N],ind[N];
ll R[N],a[N],b[N],c[N],d[N];

inline ll quick_pow(ll x,ll y,ll p)
{
    ll ans = 1;
    while(y)
    {
        if(y&1) ans = ans * x % p;
        x = x * x % p;
        y >>= 1;
    }
    return ans;
}

inline void get_g(ll m)
{
    rep(i,1,m-1)
    {
        int j = 1;
        while(j < m) { if(quick_pow(i,j,m) == 1) break; ++j; }
        if(j == m - 1)
        {
            g = i;
            break;
        }

    }
}

inline void ntt(ll*a,ll f)
{
    rep(i,0,len-1) if(i < R[i]) swap(a[i],a[R[i]]);
    for(register int i = 1 ;i < len; i <<= 1)
    {
        ll wn = quick_pow(G,(mod - 1)/(i << 1),mod);

        if(f == -1) wn = quick_pow(wn,mod - 2,mod);
        for(register int j = 0;j < len; j += i << 1)
        {
            ll w = 1;
            for(register int k = 0;k < i; ++ k,w = w * wn % mod)
            {
                ll x = a[j + k],y = w * a[i + j + k] % mod;
                a[j + k] = (x + y) % mod;
                a[i + j + k] = ((x - y)%mod + mod) %mod; 
            }
        }
    }
    if(f == -1)
    {
        rep(i,0,len-1) a[i] = a[i] * inv % mod;
    }
}

inline void mul(ll*a,ll*b,ll m)
{
    rep(i,0,len - 1) c[i] = a[i],d[i] = b[i];
    ntt(c,1); ntt(d,1);
    rep(i,0,len - 1) c[i] = c[i] * d[i] % mod,a[i] = 0;
    ntt(c,-1);
    rep(i,0,len - 1) a[i%m] = (a[i%m] + c[i]) % mod;
}

inline void solve()
{
    inv = quick_pow(len,mod - 2,mod);
    a[ind[1]] = 1;
    rep(i,1,S) if(s[i]) b[ind[s[i]]] = 1;

    while(n)
    {
        if(n&1) mul(a,b,m - 1);
        mul(b,b,m - 1);
        n >>= 1;
    }
}

int main()
{
    read(n); read(m); read(x); read(S);
    rep(i,1,S) read(s[i]);

    get_g(m);

    rep(i,0,m - 2) ind[quick_pow(g,i,m)] = i;

    for(len = 1; len <= m * 2; len <<= 1) ++ L;

    rep(i,0,len - 1) R[i] = (R[i >> 1] >> 1) | ((i & 1)<<(L - 1));

    solve();

    printf("%lld\n",a[ind[x]]);

    return 0;
}
查看评论

bzoj3992: [SDOI2015]序列统计

传送门:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3992 思路:M是一个质数,问题又是求乘积,于是我们就可以想到利用M的原根g把问题变成...
  • thy_asdf
  • thy_asdf
  • 2015-07-25 09:23:39
  • 1481

[bzoj3992][SDOI2015]序列统计

题目描述小C有一个集合S,里面的元素都是小于M的非负整数。他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属于集合S。 小C用这个生成器生成了许多这样的数列。但是小C有一个...
  • WerKeyTom_FTD
  • WerKeyTom_FTD
  • 2015-12-29 18:51:50
  • 771

BZOJ3992 [SDOI2015]序列统计

额,跟xuruifan学习了一下午相关知识终于搞过去了 首先我们得知道原根的相关性质,对于一个素数p,他的一个原根g的0~p-2次幂在模p意义下取遍1~p-1的所有值 这样在1~p-1内的每一个值i就...
  • neither_nor
  • neither_nor
  • 2016-06-22 19:24:31
  • 770

BZOJ 3992 [SDOI2015]序列统计 NTT

BZOJ 3992 [SDOI2015]序列统计 NTT
  • wzq_QwQ
  • wzq_QwQ
  • 2015-10-20 14:10:47
  • 1497

bzoj 3992: [SDOI2015]序列统计 (NTT+快速幂+DP)

题目描述传送门题目大意:给定元素在[0,m)内的整数集合S,求有多少个长度为n的数列满足所有元素属于S且mod m下的积为x,元素可以重复出现。题解这道题看到之后容易想到dp f[i][j]f[i]...
  • clover_hxy
  • clover_hxy
  • 2017-02-22 20:51:35
  • 511

bzoj3992: [SDOI2015]序列统计 NTT+快速幂

第一次自己切NTT,感觉NTT就是FFT的取模版本,具体可以看 http://blog.csdn.net/acdreamers/article/details/39026505 讲得很清楚 然后系数...
  • IED98
  • IED98
  • 2015-07-12 20:05:54
  • 2309

BZOJ 3992 SDOI2015 序列统计

FFT
  • Fuxey
  • Fuxey
  • 2016-03-10 00:24:04
  • 5879

BZOJ 3992 [SDOI2015]序列统计

NTT+矩阵快速幂懒得写了,orz链接:http://blog.csdn.net/ied98/article/details/46852805#include #include #include #d...
  • ziqian2000
  • ziqian2000
  • 2017-04-27 23:47:01
  • 209

bzoj3992【SDOI2015】序列统计

思路很好的NTT
  • AaronGZK
  • AaronGZK
  • 2016-04-01 23:31:05
  • 1409

BZOJ3992: [SDOI2015]序列统计

先脑补一个DP方程:f[a][b]∗f[c][d]=f[a+c][b∗d Mod m]f[a][b]*f[c][d]=f[a+c][b*d\ Mod\ m] 那么求f[n][x]f[n][x]可以用...
  • L_0_Forever_LF
  • L_0_Forever_LF
  • 2016-10-24 09:05:00
  • 440
    个人资料
    专栏达人 持之以恒
    等级:
    访问量: 2040
    积分: 795
    排名: 6万+
    博客专栏
    文章分类
    文章存档