【BZOJ2120】数颜色-带修改莫队算法

测试地址:数颜色
做法:本题需要用到带修改莫队算法(虽然暴力好像可过……)。
在不带修改的莫队算法里,我们是将状态 (l,r) ( l , r ) 向状态 (l±1,r),(l,r±1) ( l ± 1 , r ) , ( l , r ± 1 ) 转移,而带修改的莫队算法就是在状态中加上一维 last l a s t ,表示上一次修改操作的编号,然后状态转移变成将状态 (l,r,last) ( l , r , l a s t ) 向状态 (l±1,r,last),(l,r±1,last),(l,r,last±1) ( l ± 1 , r , l a s t ) , ( l , r ± 1 , l a s t ) , ( l , r , l a s t ± 1 ) 转移。还有一点不同就是这里的分块大小是 n23 n 2 3 而不是原来的 n n ,这样能达到 O(n53) O ( n 5 3 ) 的时间复杂度。
那么这题就是带修改莫队算法的裸题了,只需注意在向 (l,r,last±1) ( l , r , l a s t ± 1 ) 转移的过程中,涉及的操作点是否在区间 [l,r] [ l , r ] 中,如果是则需要一些特殊处理(相当于删除一个元素又新增一个元素)。
以下是本人代码:

#include <bits/stdc++.h>
using namespace std;
int n,m,blocklen,block[10010],a[10010];
int cnt[1000010],rx[10010],ry[10010],ori[10010],ans[10010],totr=0,totq=0,sum;
int l,r,now;
struct Query
{
    int id,l,r,last;
}q[10010];

bool cmp(Query a,Query b)
{
    if (block[a.l]!=block[b.l]) return block[a.l]<block[b.l];
    else if (a.r!=b.r) return a.r<b.r;
         else return a.last<b.last;
}

void expand(int x,int add)
{
    cnt[a[x]]+=add;
    if (add==1&&cnt[a[x]]==1) sum++;
    if (add==-1&&cnt[a[x]]==0) sum--;
}

void modify(int x,int add)
{
    if (add==1)
    {
        a[rx[x]]=ry[x];
        if (l<=rx[x]&&r>=rx[x])
        {
            cnt[ry[x]]++;
            if (cnt[ry[x]]==1) sum++;
            cnt[ori[x]]--;
            if (cnt[ori[x]]==0) sum--;
        }
    }
    else
    {
        a[rx[x]]=ori[x];
        if (l<=rx[x]&&r>=rx[x])
        {
            cnt[ry[x]]--;
            if (cnt[ry[x]]==0) sum--;
            cnt[ori[x]]++;
            if (cnt[ori[x]]==1) sum++;
        }
    }
}

void Mo()
{
    memset(cnt,0,sizeof(cnt));
    l=1,r=0,now=0,sum=0;
    for(int i=1;i<=m;i++)
    {
        while (q[i].last>now) modify(++now,1);
        while (q[i].last<now) modify(now--,-1);
        while (q[i].l<l) expand(--l,1);
        while (q[i].r>r) expand(++r,1);
        while (q[i].l>l) expand(l++,-1);
        while (q[i].r<r) expand(r--,-1);
        ans[q[i].id]=sum;
    }
}

int main()
{
    scanf("%d%d",&n,&m);
    blocklen=1;
    while (blocklen*blocklen*blocklen<n) blocklen++;
    blocklen=n/blocklen;
    for(int i=1;i<=n;i++)
        block[i]=i/blocklen;

    for(int i=1;i<=n;i++)
        scanf("%d",&a[i]);
    for(int i=1;i<=m;i++)
    {
        char s[10];
        scanf("%s",s);
        if (s[0]=='Q')
        {
            q[++totq].id=totq;
            q[totq].last=totr;
            scanf("%d%d",&q[totq].l,&q[totq].r);
        }
        else
        {
            ++totr;
            scanf("%d%d",&rx[totr],&ry[totr]);
            ori[totr]=a[rx[totr]];
            a[rx[totr]]=ry[totr];
        }
    }

    sort(q+1,q+totq+1,cmp);
    for(int i=totr;i>=1;i--)
        a[rx[i]]=ori[i];
    Mo();
    for(int i=1;i<=totq;i++)
        printf("%d\n",ans[i]);

    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值