【BZOJ3566】概率充电器(SHOI2014)-树形DP+概率DP

测试地址:概率充电器
做法:本题需要用到树形DP+概率DP。
要求保持充电状态的点的期望数目,根据期望的线性性,我们可以求出每个点保持充电状态的概率 pi p i ,然后累加起来。但是我们发现这样的话状态转移方程十分复杂,所以考虑反过来求,求每个点没有被充电的概率。
down(i) d o w n ( i ) 为点 i i 不被它自己和它子树中的点充电的概率,因为一个点的一个儿子不给它充电有两种情况,一是它的儿子本身就没被充电,二是它的儿子被充电但边未通电,所以我们有:
down(i)=(1qi)json(i)down(j)+(1down(j))(1P(i,j))
再令 up(i) u p ( i ) 为点 i i 不被它的父亲充电的概率,这时也有两种情况,一是它的父亲本身没被充电,二是它的父亲被充电但它们之间的边未通电。那么我们首先算出它的父亲没被充电的概率:
t=up(fa(i))down(fa(i))down(i)+(1down(i))(1P(fa(i),i))
注意这里的除法是因为我们要排除点 i i 的贡献,要注意特判分母等于0的情况,如果它等于 0 0 ,就直接意味着t=0。接下来我们有:
up(i)=t+(1t)(1P(fa(i),i)) u p ( i ) = t + ( 1 − t ) ( 1 − P ( f a ( i ) , i ) )
那么最后的答案就是:
ans=ni=1(1down(i)up(i)) a n s = ∑ i = 1 n ( 1 − d o w n ( i ) u p ( i ) )
听说有可能爆栈,所以DP还是用BFS做更为稳妥一些。
题外话:感觉这种复杂的DP转移题目还是很难理解,特别是还和概率和树扯在一起,非常考验人的大脑……
以下是本人代码:

#include <bits/stdc++.h>
using namespace std;
int n,first[500010]={0},tot=0,fa[500010],h,t,order[500010];
double q[500010],down[500010],up[500010],ep[500010];
struct edge
{
    int v,next;
    double p;
}e[1000010];

void insert(int a,int b,double p)
{
    e[++tot].v=b;
    e[tot].p=p;
    e[tot].next=first[a];
    first[a]=tot;
}

void init()
{
    scanf("%d",&n);
    for(int i=1;i<n;i++)
    {
        int a,b;
        double p;
        scanf("%d%d%lf",&a,&b,&p);
        insert(a,b,p/100.0),insert(b,a,p/100.0);
    }
    for(int i=1;i<=n;i++)
    {
        scanf("%lf",&q[i]);
        q[i]/=100.0;
    }
}

void bfs()
{
    h=t=order[1]=1;
    fa[1]=0;
    while(h<=t)
    {
        int v=order[h++];
        for(int i=first[v];i;i=e[i].next)
            if (e[i].v!=fa[v]) fa[e[i].v]=v,ep[e[i].v]=e[i].p,order[++t]=e[i].v;
    }
}

void dp()
{
    for(int i=n;i>=1;i--)
    {
        int v=order[i];
        down[v]=1.0-q[v];
        for(int j=first[v];j;j=e[j].next)
            if (e[j].v!=fa[v]) down[v]*=down[e[j].v]+(1.0-down[e[j].v])*(1.0-e[j].p);
    }
    for(int i=1;i<=n;i++)
    {
        int v=order[i];
        if (v==1) {up[v]=1.0;continue;}
        up[v]=down[v]+(1.0-down[v])*(1.0-ep[v]);
        up[v]=fabs(up[v])<1e-6?0.0:up[fa[v]]*down[fa[v]]/up[v];
        up[v]=up[v]+(1.0-up[v])*(1.0-ep[v]);
    }
    double ans=0.0;
    for(int i=1;i<=n;i++)
        ans+=1.0-down[i]*up[i];
    printf("%.6lf",ans);
}

int main()
{
    init();
    bfs();
    dp();

    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值