【BZOJ1925】地精部落(SDOI2010)-DP+滚动数组

测试地址:地精部落
做法:本题需要用到DP+滚动数组。
注意到题目问的就是长为 n n 的波动排列数目,但是由于p不一定是质数,所以我们要避免使用逆元,又因为空间只有64MB,我们需要严格控制空间的使用。
考虑如何计算长为 i i 的波动排列数目,我们可以枚举i的位置 j j ,因为i一定是最大的元素,所以它的两边一定是谷,因此我们就要求长为 j1 j − 1 ij i − j 的第一位或最后一位是谷的方案数,然后乘上一个 Cj1i1 C i − 1 j − 1 累加入答案即可。显然组合数可以通过 Cji=Cj1i1+Cji1 C i j = C i − 1 j − 1 + C i − 1 j 这个递推式滚动计算。
问题是我们怎么计算上面那些带限制的方案数呢?注意到一个性质:波动排列的第一位是峰或谷的方案数是一样的。为什么呢?因为显然每一个第一位是峰的方案,都可以通过所有元素 i i 变为ni+1唯一对应一个第一位是谷的方案。所以我们定义 f(i) f ( i ) 为第一位是谷的方案,那么我们可以得到状态转移方程:
2f(i)=ij=1Cj1i1f(j1)f(ij) 2 f ( i ) = ∑ j = 1 i C i − 1 j − 1 f ( j − 1 ) f ( i − j )
注意到 f(i) f ( i ) 有个 2 2 的系数,然而上面我们已经说了要尽量避免逆元的计算,所以根据定义,我们只计算j是偶数的情况,即:
f(i)=ij=1[j]Cj1i1f(j1)f(ij) f ( i ) = ∑ j = 1 i [ j 是 偶 数 ] C i − 1 j − 1 f ( j − 1 ) f ( i − j )
特殊地, f(0)=f(1)=1 f ( 0 ) = f ( 1 ) = 1 ,那么这道题的答案就是 2f(n) 2 f ( n ) ,这样我们就得到了一个 O(n2) O ( n 2 ) 的做法,可以通过此题。
以下是本人代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int n;
ll p,f[5010]={0},C[2][5010]={0};

int main()
{
    scanf("%d%lld",&n,&p);

    f[0]=f[1]=1;
    C[0][0]=1;
    int past=0,now=1;
    for(int i=2;i<=n;i++)
    {
        C[now][0]=1;
        for(int j=1;j<=i-1;j++)
            C[now][j]=(C[past][j-1]+C[past][j])%p;
        for(int j=2;j<=i;j+=2)
            f[i]=(f[i]+C[now][j-1]*f[j-1]%p*f[i-j])%p;
        swap(now,past);
    }
    printf("%lld",(f[n]<<1)%p);

    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值